Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Bioinformatics ; 24(1): 14, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631751

RESUMO

BACKGROUND: Elucidating the Transcription Factors (TFs) that drive the gene expression changes in a given experiment is a common question asked by researchers. The existing methods rely on the predicted Transcription Factor Binding Site (TFBS) to model the changes in the motif activity. Such methods only work for TFs that have a motif and assume the TF binding profile is the same in all cell types. RESULTS: Given the wealth of the ChIP-seq data available for a wide range of the TFs in various cell types, we propose that gene expression modeling can be done using ChIP-seq "signatures" directly, effectively skipping the motif finding and TFBS prediction steps. We present xcore, an R package that allows TF activity modeling based on ChIP-seq signatures and the user's gene expression data. We also provide xcoredata a companion data package that provides a collection of preprocessed ChIP-seq signatures. We demonstrate that xcore leads to biologically relevant predictions using transforming growth factor beta induced epithelial-mesenchymal transition time-courses, rinderpest infection time-courses, and embryonic stem cells differentiated to cardiomyocytes time-course profiled with Cap Analysis Gene Expression. CONCLUSIONS: xcore provides a simple analytical framework for gene expression modeling using linear models that can be easily incorporated into differential expression analysis pipelines. Taking advantage of public ChIP-seq databases, xcore can identify meaningful molecular signatures and relevant ChIP-seq experiments.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Fatores de Transcrição , Animais , Imunoprecipitação da Cromatina/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ligação Proteica , Expressão Gênica , Sítios de Ligação
2.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32940337

RESUMO

Immunogenetic variation in humans is important in research, clinical diagnosis and increasingly a target for therapeutic intervention. Two highly polymorphic loci play critical roles, namely the human leukocyte antigen (HLA) system, which is the human version of the major histocompatibility complex (MHC), and the Killer-cell immunoglobulin-like receptors (KIR) that are relevant for responses of natural killer (NK) and some subsets of T cells. Their accurate classification has typically required the use of dedicated biological specimens and a combination of in vitro and in silico efforts. Increased availability of next generation sequencing data has led to the development of ancillary computational solutions. Here, we report an evaluation of recently published algorithms to computationally infer complex immunogenetic variation in the form of HLA alleles and KIR haplotypes from whole-genome or whole-exome sequencing data. For both HLA allele and KIR gene typing, we identified tools that yielded >97% overall accuracy for four-digit HLA types, and >99% overall accuracy for KIR gene presence, suggesting the readiness of in silico solutions for use in clinical and high-throughput research settings.


Assuntos
Simulação por Computador , Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunogenética/métodos , Polimorfismo de Nucleotídeo Único , Receptores KIR/genética , Alelos , Frequência do Gene , Genótipo , Técnicas de Genotipagem/métodos , Haplótipos , Humanos , Fenótipo , Sequenciamento do Exoma/métodos , Sequenciamento Completo do Genoma/métodos
3.
Genome Res ; 29(3): 506-519, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30760547

RESUMO

Organogenesis involves dynamic regulation of gene transcription and complex multipathway interactions. Despite our knowledge of key factors regulating various steps of heart morphogenesis, considerable challenges in understanding its mechanism still exist because little is known about their downstream targets and interactive regulatory network. To better understand transcriptional regulatory mechanism driving heart development and the consequences of its disruption in vivo, we performed time-series analyses of the transcriptome and genome-wide chromatin accessibility in isolated cardiomyocytes (CMs) from wild-type zebrafish embryos at developmental stages corresponding to heart tube morphogenesis, looping, and maturation. We identified genetic regulatory modules driving crucial events of heart development that contained key cardiac TFs and are associated with open chromatin regions enriched for DNA sequence motifs belonging to the family of the corresponding TFs. Loss of function of cardiac TFs Gata5, Tbx5a, and Hand2 affected the cardiac regulatory networks and caused global changes in chromatin accessibility profile, indicating their role in heart development. Among regions with differential chromatin accessibility in mutants were highly conserved noncoding elements that represent putative enhancers driving heart development. The most prominent gene expression changes, which correlated with chromatin accessibility modifications within their proximal promoter regions, occurred between heart tube morphogenesis and looping, and were associated with metabolic shift and hematopoietic/cardiac fate switch during CM maturation. Our results revealed the dynamic regulatory landscape throughout heart development and identified interactive molecular networks driving key events of heart morphogenesis.


Assuntos
Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Transcriptoma , Animais , Células Cultivadas , Cromatina/genética , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
PLoS Comput Biol ; 17(7): e1009131, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228721

RESUMO

Human immunogenetic variation in the form of HLA and KIR types has been shown to be strongly associated with a multitude of immune-related phenotypes. However, association studies involving immunogenetic loci most commonly involve simple analyses of classical HLA allelic diversity, resulting in limitations regarding the interpretability and reproducibility of results. We here present MiDAS, a comprehensive R package for immunogenetic data transformation and statistical analysis. MiDAS recodes input data in the form of HLA alleles and KIR types into biologically meaningful variables, allowing HLA amino acid fine mapping, analyses of HLA evolutionary divergence as well as experimentally validated HLA-KIR interactions. Further, MiDAS enables comprehensive statistical association analysis workflows with phenotypes of diverse measurement scales. MiDAS thus closes the gap between the inference of immunogenetic variation and its efficient utilization to make relevant discoveries related to immune and disease biology. It is freely available under a MIT license.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Fenômenos Imunogenéticos/genética , Software , Evolução Molecular , Antígenos HLA/genética , Humanos
5.
Cell Mol Life Sci ; 78(19-20): 6669-6687, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34557935

RESUMO

The atrioventricular canal (AVC) is the site where key structures responsible for functional division between heart regions are established, most importantly, the atrioventricular (AV) conduction system and cardiac valves. To elucidate the mechanism underlying AVC development and function, we utilized transgenic zebrafish line sqet31Et expressing EGFP in the AVC to isolate this cell population and profile its transcriptome at 48 and 72 hpf. The zebrafish AVC transcriptome exhibits hallmarks of mammalian AV node, including the expression of genes implicated in its development and those encoding connexins forming low conductance gap junctions. Transcriptome analysis uncovered protein-coding and noncoding transcripts enriched in AVC, which have not been previously associated with this structure, as well as dynamic expression of epithelial-to-mesenchymal transition markers and components of TGF-ß, Notch, and Wnt signaling pathways likely reflecting ongoing AVC and valve development. Using transgenic line Tg(myl7:mermaid) encoding voltage-sensitive fluorescent protein, we show that abolishing the pacemaker-containing sinoatrial ring (SAR) through Isl1 loss of function resulted in spontaneous activation in the AVC region, suggesting that it possesses inherent automaticity although insufficient to replace the SAR. The SAR and AVC transcriptomes express partially overlapping species of ion channels and gap junction proteins, reflecting their distinct roles. Besides identifying conserved aspects between zebrafish and mammalian conduction systems, our results established molecular hallmarks of the developing AVC which underlies its role in structural and electrophysiological separation between heart chambers. This data constitutes a valuable resource for studying AVC development and function, and identification of novel candidate genes implicated in these processes.


Assuntos
Genoma/genética , Valvas Cardíacas/fisiologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/genética , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Genômica/métodos , Defeitos dos Septos Cardíacos/genética , Miocárdio/patologia , Organogênese/genética , Marca-Passo Artificial , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/genética
6.
BMC Genomics ; 22(1): 904, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34920711

RESUMO

BACKGROUND: Liver fibrosis is a wound-healing response to tissue injury and inflammation hallmarked by the extracellular matrix (ECM) protein deposition in the liver parenchyma and tissue remodelling. Different cell types of the liver are known to play distinct roles in liver injury response. Hepatocytes and liver endothelial cells receive molecular signals indicating tissue injury and activate hepatic stellate cells which produce ECM proteins upon their activation. Despite the growing knowledge on the molecular mechanism underlying hepatic fibrosis in general, the cell-type-specific gene regulatory network associated with the initial response to hepatotoxic injury is still poorly characterized. RESULTS: In this study, we used thioacetamide (TAA) to induce hepatic injury in adult zebrafish. We isolated three major liver cell types - hepatocytes, endothelial cells and hepatic stellate cells - and identified cell-type-specific chromatin accessibility and transcriptional changes in an early stage of liver injury. We found that TAA induced transcriptional shifts in all three cell types hallmarked by significant alterations in the expression of genes related to fatty acid and carbohydrate metabolism, as well as immune response-associated and vascular-specific genes. Interestingly, liver endothelial cells exhibit the most pronounced response to liver injury at the transcriptome and chromatin level, hallmarked by the loss of their angiogenic phenotype. CONCLUSION: Our results uncovered cell-type-specific transcriptome and epigenome responses to early stage liver injury, which provide valuable insights into understanding the molecular mechanism implicated in the early response of the liver to pro-fibrotic signals.


Assuntos
Células Endoteliais , Epigenômica , Animais , Fígado , Peixe-Zebra/genética
7.
iScience ; 27(6): 110083, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38872974

RESUMO

We utilized scRNA-seq to delineate the diversity of cell types in the zebrafish heart. Transcriptome profiling of over 50,000 cells at 48 and 72 hpf defined at least 18 discrete cell lineages of the developing heart. Utilizing well-established gene signatures, we identified a population of cells likely to be the primary pacemaker and characterized the transcriptome profile defining this critical cell type. Two previously uncharacterized genes, atp1b3b and colec10, were found to be enriched in the sinoatrial cardiomyocytes. CRISPR/Cas9-mediated knockout of these two genes significantly reduced heart rate, implicating their role in cardiac development and conduction. Additionally, we describe other cardiac cell lineages, including the endothelial and neural cells, providing their expression profiles as a resource. Our results established a detailed atlas of the developing heart, providing valuable insights into cellular and molecular mechanisms, and pinpointed potential new players in heart rhythm regulation.

8.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283702

RESUMO

Most mitochondrial proteins are encoded by nuclear genes, synthetized in the cytosol and targeted into the organelle. To characterize the spatial organization of mitochondrial gene products in zebrafish (Danio rerio), we sequenced RNA from different cellular fractions. Our results confirmed the presence of nuclear-encoded mRNAs in the mitochondrial fraction, which in unperturbed conditions, are mainly transcripts encoding large proteins with specific properties, like transmembrane domains. To further explore the principles of mitochondrial protein compartmentalization in zebrafish, we quantified the transcriptomic changes for each subcellular fraction triggered by the chchd4a -/- mutation, causing the disorders in the mitochondrial protein import. Our results indicate that the proteostatic stress further restricts the population of transcripts on the mitochondrial surface, allowing only the largest and the most evolutionary conserved proteins to be synthetized there. We also show that many nuclear-encoded mitochondrial transcripts translated by the cytosolic ribosomes stay resistant to the global translation shutdown. Thus, vertebrates, in contrast to yeast, are not likely to use localized translation to facilitate synthesis of mitochondrial proteins under proteostatic stress conditions.


Assuntos
Genes Mitocondriais , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa