Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Metabolomics ; 18(6): 40, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35699774

RESUMO

INTRODUCTION: Accuracy of feature annotation and metabolite identification in biological samples is a key element in metabolomics research. However, the annotation process is often hampered by the lack of spectral reference data in experimental conditions, as well as logistical difficulties in the spectral data management and exchange of annotations between laboratories. OBJECTIVES: To design an open-source infrastructure allowing hosting both nuclear magnetic resonance (NMR) and mass spectra (MS), with an ergonomic Web interface and Web services to support metabolite annotation and laboratory data management. METHODS: We developed the PeakForest infrastructure, an open-source Java tool with automatic programming interfaces that can be deployed locally to organize spectral data for metabolome annotation in laboratories. Standardized operating procedures and formats were included to ensure data quality and interoperability, in line with international recommendations and FAIR principles. RESULTS: PeakForest is able to capture and store experimental spectral MS and NMR metadata as well as collect and display signal annotations. This modular system provides a structured database with inbuilt tools to curate information, browse and reuse spectral information in data treatment. PeakForest offers data formalization and centralization at the laboratory level, facilitating shared spectral data across laboratories and integration into public databases. CONCLUSION: PeakForest is a comprehensive resource which addresses a technical bottleneck, namely large-scale spectral data annotation and metabolite identification for metabolomics laboratories with multiple instruments. PeakForest databases can be used in conjunction with bespoke data analysis pipelines in the Galaxy environment, offering the opportunity to meet the evolving needs of metabolomics research. Developed and tested by the French metabolomics community, PeakForest is freely-available at https://github.com/peakforest .


Assuntos
Metabolômica , Metadados , Curadoria de Dados/métodos , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos
2.
Int J Obes (Lond) ; 45(6): 1271-1283, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33714973

RESUMO

BACKGROUND: Early hyperphagia and hypothalamic inflammation encountered after Western diet (WD) are linked to rodent propensity to obesity. Inflammation in several brain structures has been associated with gut dysbiosis. Since gut microbiota is highly sensitive to dietary changes, we hypothesised that immediate gut microbiota adaptation to WD in rats is involved in inflammation-related hypothalamic modifications. METHODS: We evaluated short-term impact of WD consumption (2 h, 1, 2 and 4 days) on hypothalamic metabolome and caecal microbiota composition and metabolome. Data integration analyses were performed to uncover potential relationships among these three datasets. Finally, changes in hypothalamic gene expression in absence of gut microbiota were evaluated in germ-free rats fed WD for 2 days. RESULTS: WD quickly and profoundly affected the levels of several hypothalamic metabolites, especially oxidative stress markers. In parallel, WD consumption reduced caecal microbiota diversity, modified its composition towards pro-inflammatory profile and changed caecal metabolome. Data integration identified strong correlations between gut microbiota sub-networks, unidentified caecal metabolites and hypothalamic oxidative stress metabolites. Germ-free rats displayed reduced energy intake and no changes in redox homoeostasis machinery expression or pro-inflammatory cytokines after 2 days of WD, in contrast to conventional rats, which exhibited increased SOD2, GLRX and IL-6 mRNA levels. CONCLUSION: A potentially pro-inflammatory gut microbiota and an early hypothalamic oxidative stress appear shortly after WD introduction. Tripartite data integration highlighted putative links between gut microbiota sub-networks and hypothalamic oxidative stress. Together with the absence of hypothalamic modifications in germ-free rats, this strongly suggests the involvement of the microbiota-hypothalamus axis in rat adaptation to WD introduction and in energy homoeostasis regulation.


Assuntos
Eixo Encéfalo-Intestino/fisiologia , Dieta Ocidental/efeitos adversos , Disbiose , Hipotálamo/metabolismo , Animais , Citocinas/metabolismo , Disbiose/metabolismo , Disbiose/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Masculino , Ratos , Ratos Wistar
3.
Br J Nutr ; 118(11): 889-896, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29173208

RESUMO

Cysteine (Cys), a conditionally indispensable amino acid, is required for the detoxification of paracetamol (acetaminophen, N-acetyl-para-aminophenol, 4-hydroxy-acetanilide, APAP), a drug of widespread use in older persons. We recently reported that repeated APAP cures could worsen sarcopenia in old rats, likely to be due to the impairment of Cys/GSH homoeostasis. The aim of the study was to evaluate whether a dietary Cys supplementation during APAP cures could improve Cys/GSH homoeostasis and thus preserve skeletal muscle. Male 21·5-month-old Wistar rats received three 2-week-long cures of APAP (1 % of diet) alone or with extra Cys (0·5 % of diet), intercalated with washout periods of 2 weeks (APAP and APAP-Cys groups, respectively). They were compared with untreated control rats (CT group). CT and APAP-Cys groups were pair-fed to the APAP group. Dietary Cys supplementation was efficient to prevent increase in liver mass (P<0·0001), decrease in liver GSH (P<0·0001), increase in blood GSH concentration (P<0·0001), and to some extent, decrease in plasma free Cys concentration (P<0·05), all induced by repeated APAP cures. The addition of Cys to APAP cures decreased plasma alanine transaminase (P<0·05), the fractional synthesis rate of liver proteins (P<0·01), and increased masses of extensor digitorum longus (P<0·01), and soleus (P<0·05), compared with the APAP group. Cys supplementation prevented alteration in Cys/GSH homoeostasis and increased some muscle masses in old rats under repeated cures with a non-toxic dose of APAP.


Assuntos
Acetaminofen/efeitos adversos , Cisteína/farmacologia , Suplementos Nutricionais , Sarcopenia/tratamento farmacológico , Acetaminofen/administração & dosagem , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Glutationa/metabolismo , Homocisteína/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar
4.
BMC Musculoskelet Disord ; 17(1): 353, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27549132

RESUMO

BACKGROUND: Anti-Tumor Necrosis Factor (TNF) therapies are able to control rheumatoid arthritis (RA) disease activity and limit structural damage. Yet no predictive factor of response to anti-TNF has been identified. Metabolomic profile is known to vary in response to different inflammatory rheumatisms so determining it could substantially improve diagnosis and, consequently, prognosis. The aim of this study was to use mass spectrometry to determine whether there is variation in the metabolome in patients treated with anti-TNF and whether any particular metabolomic profile can serve as a predictor of therapeutic response. METHODS: Blood samples were analyzed in 140 patients with active RA before initiation of anti-TNF treatment and after 6 months of Anti-TNF treatment (100 good responders and 40 non-responders). Plasma was deproteinized, extracted and analyzed by reverse-phase chromatography-QToF mass spectrometry. Extracted and normalized ions were tested by univariate and ANOVA analysis followed by partial least-squares regression-discriminant analysis (PLS-DA). Orthogonal Signal Correction (OSC) was also used to filter data from unwanted non-related effects. Disease activity scores (DAS 28) obtained at 6 months were correlated with metabolome variation findings to identify a metabolite that is predictive of therapeutic response to anti-TNF. RESULTS: After 6 months of anti-TNF therapy, 100 patients rated as good responders and 40 patients as non-responders according to EULAR criteria. Metabolomic investigations suggested two different metabolic fingerprints splitting the good-responders group and the non-responders group, without differences in anti-TNF therapies. Univariate analysis revealed 24 significant ions in positive mode (p < 0.05) and 31 significant ions in negative mode (p < 0.05). Once intersected with PLS results, only 35 ions remained. Carbohydrate derivates emerged as strong candidate determinants of therapeutic response. CONCLUSIONS: This is the first study describing metabolic profiling in response to anti-TNF treatments using plasma samples. The study highlighted two different metabolic profiles splitting good responders from non-responders.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Metaboloma , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adalimumab/uso terapêutico , Adulto , Idoso , Artrite Reumatoide/sangue , Artrite Reumatoide/diagnóstico , Cromatografia de Fase Reversa , Análise Discriminante , Etanercepte/uso terapêutico , Feminino , Humanos , Infliximab/uso terapêutico , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento
5.
J Physiol ; 593(5): 1259-72, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25557160

RESUMO

Ageing impairs the muscle anabolic effect of food intake, which may explain muscle loss and an increased risk of sarcopenia. Ageing is also associated with low grade inflammation (LGI), which has been negatively correlated with muscle mass and strength. In rodents, the muscle anabolic resistance observed during ageing and sarcopenia has been ascribed to the development of the LGI. We aimed to investigate this relationship in humans. We studied protein metabolism and physical fitness in healthy elderly volunteers with slight chronic C-reactive protein. Two groups of healthy elderly volunteers were selected on the presence (or not) of a chronic, slight, elevation of CRP (Control: <1; CRP+: >2 mg l(-1) and <10 mg l(-1) , for 2 months). Body composition, short performance battery test, aerobic fitness and muscle strength were assessed. Whole body and muscle protein metabolism and the splanchnic extraction of amino acids were assessed using [(13) C]leucine and [(2) H]leucine infusion. The anabolic effect of food intake was measured by studying the volunteers both at the post-absorptive and post-prandial states. Slight chronic CRP elevation resulted in neither an alteration of whole body, nor skeletal muscle protein metabolism at both the post-absorptive and the post-prandial states. However, CRP+ presented a reduction of physical fitness, increased abdominal fat mass and post-prandial insulin resistance. Plasma cytokines (interleukin-1, interleukin-6, tumour necrosis factor α) and markers of endothelial inflammation (intercellular adhesion molecule, vascular cell adhesion molecule, selectins) were similar between groups. An isolated elevated CRP in healthy older population does not indicate an impaired skeletal muscle anabolism after food intake, nor an increased risk of skeletal muscle wasting. We propose that a broader picture of LGI (notably with elevated pro-inflammatory cytokines) is required to impact muscle metabolism and mass. However, an isolated chronic CRP elevation could predict a decrease in aerobic fitness and insulin resistance installation in elderly individuals.


Assuntos
Envelhecimento/metabolismo , Proteína C-Reativa/metabolismo , Proteínas Musculares/metabolismo , Aptidão Física , Período Pós-Prandial , Gordura Abdominal/metabolismo , Idoso , Exercício Físico , Humanos , Resistência à Insulina , Masculino
6.
J Nutr ; 145(5): 923-30, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25809681

RESUMO

BACKGROUND: Today, high chronic intake of added sugars is frequent, which leads to inflammation, oxidative stress, and insulin resistance. These 3 factors could reduce meal-induced stimulation of muscle protein synthesis and thus aggravate the age-related loss of muscle mass (sarcopenia). OBJECTIVES: Our aims were to determine if added sugars could accelerate sarcopenia and to assess the capacity of antioxidants and anti-inflammatory agents to prevent this. METHODS: For 5 mo, 16-mo-old male rats were starch fed (13% sucrose and 49% wheat starch diet) or sucrose fed (62% sucrose and 0% wheat starch diet) with or without rutin (5 g/kg diet), vitamin E (4 times), vitamin A (2 times), vitamin D (5 times), selenium (10 times), and zinc (+44%) (R) supplementation. We measured the evolution of body composition and inflammation, plasma insulin-like growth factor 1 (IGF-I) concentration and total antioxidant status, insulin sensitivity (oral-glucose-tolerance test), muscle weight, superoxide dismutase activity, glutathione concentration, and in vivo protein synthesis rates. RESULTS: Sucrose-fed rats lost significantly more lean body mass (-8.1% vs. -5.4%, respectively) and retained more fat mass (+0.2% vs. -33%, respectively) than starch-fed rats. Final muscle mass was 11% higher in starch-fed rats than in sucrose-fed rats. Sucrose had little effect on inflammation, oxidative stress, and plasma IGF-I concentration but reduced the insulin sensitivity index (divided by 2). Meal-induced stimulation of muscle protein synthesis was significantly lower in sucrose-fed rats (+7.3%) than in starch-fed rats (+22%). R supplementation slightly but significantly reduced oxidative stress and increased muscle protein concentration (+4%) but did not restore postprandial stimulation of muscle protein synthesis. CONCLUSIONS: High chronic sucrose intake accelerates sarcopenia in older male rats through an alteration of postprandial stimulation of muscle protein synthesis. This effect could be explained by a decrease of insulin sensitivity rather than by changes in plasma IGF-I, inflammation, and/or oxidative stress.


Assuntos
Envelhecimento , Sacarose Alimentar/efeitos adversos , Regulação da Expressão Gênica no Desenvolvimento , Resistência à Insulina , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Sarcopenia/etiologia , Adiposidade , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/uso terapêutico , Composição Corporal , Sacarose Alimentar/antagonistas & inibidores , Suplementos Nutricionais , Glutationa/metabolismo , Fator de Crescimento Insulin-Like I/análise , Masculino , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Estresse Oxidativo , Período Pós-Prandial , Distribuição Aleatória , Ratos Wistar , Sarcopenia/imunologia , Sarcopenia/metabolismo , Sarcopenia/prevenção & controle
7.
J Physiol ; 590(8): 2035-49, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22351629

RESUMO

During ageing, immobilization periods increase and are partially responsible of sarcopaenia by inducing a muscle atrophy which is hardly recovered from. Immobilization-induced atrophy is due to an increase of muscle apoptotic and proteolytic processes and decreased protein synthesis. Moreover, previous data suggested that the lack of muscle mass recovery might be due to a defect in protein synthesis response during rehabilitation. This study was conducted to explore protein synthesis during reloading and leucine supplementation effect as a nutritional strategy for muscle recovery. Old rats (22­24 months old) were subjected to unilateral hindlimb casting for 8 days (I8) and allowed to recover for 10­40 days (R10­R40). They were fed a casein (±leucine) diet during the recovery. Immobilized gastrocnemius muscles atrophied by 20%, and did not recover even at R40. Amount of polyubiquitinated conjugates and chymotrypsin- and trypsin-like activities of the 26S proteasome increased. These changes paralleled an 'anabolic resistance' of the protein synthesis at the postprandial state (decrease of protein synthesis, P-S6 and P-4E-BP1). During the recovery, proteasome activities remained elevated until R10 before complete normalization and protein synthesis was slightly increased. With free leucine supplementation during recovery, if proteasome activities were normalized earlier and protein synthesis was higher during the whole recovery, it nevertheless failed in muscle mass gain. This discrepancy could be due to a 'desynchronization' between the leucine signal and the availability of amino acids coming from casein digestion. Thus, when supplemented with leucine-rich proteins (i.e. whey) and high protein diets, animals partially recovered the muscle mass loss.


Assuntos
Envelhecimento/fisiologia , Leucina/administração & dosagem , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/administração & dosagem , Atrofia Muscular/dietoterapia , Atrofia Muscular/fisiopatologia , Aminoácidos/sangue , Animais , Dieta , Suplementos Nutricionais , Elevação dos Membros Posteriores/métodos , Leucina/metabolismo , Masculino , Proteínas do Leite/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ratos Wistar , Ubiquitina/metabolismo , Proteínas do Soro do Leite
8.
J Physiol ; 590(20): 5199-210, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22802586

RESUMO

The object of the study was to investigate the sequential changes of protein synthesis in skeletal muscle during establishment of obesity, considering muscle typology. Adult Wistar rats were fed a standard diet for 16 weeks (C; n = 14), or a high-fat, high-sucrose diet for 16 (HF16; n = 14) or 24 weeks (HF24; n = 15). Body composition was measured using a dual-energy X-ray absorptiometry scanner. The fractional synthesis rates (FSRs) of muscle protein fractions were calculated in tibialis anterior (TA) and soleus muscles by incorporation of l-13C-valine in muscle protein. Muscle lipid and mitochondria contents were determined using histochemical analysis. Obesity occurred in an initial phase, from 1 to 16 weeks, with an increase in weight (P < 0.05), fat mass (P < 0.001), muscle mass (P < 0.001) and FSR in TA (actin: 5.3 ± 0.2 vs. 8.8 ± 0.5% day−1, C vs. HF16, P < 0.001) compared with standard diet. The second phase, from 16 to 24 weeks, was associated with a weight stabilization, a decrease in muscle mass (P < 0.05) and a decrease in FSR in TA (mitochondrial: 5.6 ± 0.2 vs. 4.2 ± 0.4% day−1, HF16 vs. HF24, P < 0.01) compared with HF16 group. Muscle lipid content was increased in TA in the second phase of obesity development (P < 0.001). Muscle mass, lipid infiltration and muscle protein synthesis were differently affected, depending on the stage of obesity development and muscle typology. Chronic lipid infiltration in glycolytic muscle is concomitant with a reduction of muscle protein synthesis, suggesting that muscle lipid infiltration in response to a high-fat diet is deleterious for the incorporation of amino acid in skeletal muscle proteins.


Assuntos
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Sacarose Alimentar/administração & dosagem , Metabolismo dos Lipídeos , Masculino , Ratos , Ratos Wistar
9.
Am J Physiol Endocrinol Metab ; 303(8): E973-82, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22895782

RESUMO

Studies have shown that timing of protein intake, leucine content, and speed of digestion significantly affect postprandial protein utilization. Our aim was to determine if one can spare lean body mass during energy restriction by varying the quality and the timing of protein intake. Obese volunteers followed a 6-wk restricted energy diet. Four groups were compared: casein pulse, casein spread, milk-soluble protein (MSP, = whey) pulse, and MSP spread (n = 10-11 per group). In casein groups, caseins were the only protein source; it was MSP in MSP groups. Proteins were distributed in four meals per day in the proportion 8:80:4:8% in the pulse groups; it was 25:25:25:25% in the spread groups. We measured weight, body composition, nitrogen balance, 3-methylhistidine excretion, perception of hunger, plasma parameters, adipose tissue metabolism, and whole body protein metabolism. Volunteers lost 7.5 ± 0.4 kg of weight, 5.1 ± 0.2 kg of fat, and 2.2 ± 0.2 kg of lean mass, with no difference between groups. In adipose tissue, cell size and mRNA expression of various genes were reduced with no difference between groups. Hunger perception was also never different between groups. In the last week, due to a higher inhibition of protein degradation and despite a lower stimulation of protein synthesis, postprandial balance between whole body protein synthesis and degradation was better with caseins than with MSP. It seems likely that the positive effect of caseins on protein balance occurred only at the end of the experiment.


Assuntos
Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Caseínas/farmacologia , Proteínas Alimentares/farmacologia , Proteínas do Leite/farmacologia , Redução de Peso/fisiologia , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Adipócitos/ultraestrutura , Tecido Adiposo/metabolismo , Adulto , Algoritmos , Aminoácidos/metabolismo , Peso Corporal/fisiologia , Tamanho Celular , Dieta com Restrição de Carboidratos , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Fome/fisiologia , Insulina/sangue , Leucina/sangue , Leucina/metabolismo , Masculino , Metilistidinas/urina , Estado Nutricional , Obesidade/dietoterapia , Obesidade/metabolismo , Proteínas/metabolismo , Programas de Redução de Peso
10.
Front Nutr ; 9: 986542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245508

RESUMO

Background and aims: Aging is characterized, at the systemic level, by the development of low-grade inflammation, which has been identified as determining sarcopenia by blunting postprandial muscle anabolism. The causes of this "inflammageing" is still not clearly defined. An increased intestinal permeability, a microbiota dysbiosis and subsequent generation of intestinal then generalized inflammation have been hypothesized. The objective of this study was to test in vivo during aging if (1) a chronic low-grade intestinal inflammation can lead to anabolic resistance and muscle loss and (2) if a bacterial strain presenting anti-inflammatory properties could prevent these adverse effects. Methods: Young adult (6 m) and elderly rats (18 m) received Dextran Sodium Sulfate (DSS) for 28 days to generate low-grade intestinal inflammation, and received (PB1 or PB2 groups) or not (DSS group) one of the two S. Thermophilus strains (5 × 109 CFU/day) previously shown to present an anti-inflammatory potential in vitro. They were compared to pair fed control (PF). Muscle and colon weights and protein synthesis (using 13C Valine) were measured at slaughter. Muscle proteolysis, gut permeability and inflammatory markers were assessed only in old animals by RT-PCR or proteins quantifications (ELISA). Results: In both adult and old rats, DSS reduced absolute protein synthesis (ASR) in gastrocnemius muscle [-12.4% (PB1) and -9.5% (PB2) vs. PF, P < 0.05] and increased ASR in colon (+86% and +30.5%, respectively vs. PF, P < 0.05). PB1 (CNRZ160 strain) but not PB2 resulted in a higher muscle ASR as compared to DSS in adults (+18%, P < 0.05), a trend also observed for PB1 in old animals (+12%, P = 0.10). This was associated with a blunted increase in colon ASR. In old rats, PB1 also significantly decreased expression of markers of autophagy and ubiquitin-proteasome pathways vs. DSS groups and improved gut permeability (assessed by Occludin, Zonula Occludens 1 and Claudin 1 expression, P < 0.05) and alleviated systemic inflammation (A2M: -48% vs. DSS, P < 0.05). Conclusion: The loss of muscle anabolism associated with low-grade intestinal inflammation can be prevented by supplementation with anti-inflammatory CNRZ160 strain. We propose that the moderated gut inflammation by CNRZ160 may result in curtailed amino acids (AA) utilization by the gut, and subsequent restored AA systemic availability to support muscle protein accretion. Therefore, CNRZ160 could be considered as an efficient probiotic to modulate muscle mass loss and limit sarcopenia during aging.

11.
Biogerontology ; 12(2): 133-45, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20924673

RESUMO

In the field of frailty, there is an underlying hypothesis that chronic low-grade inflammation contributes to bad outcomes in response to a stressor. The host response to an Escherichia coli infection was assessed in 24 month old male rats exhibiting a chronic low-grade inflammation and in non-inflamed control rats. Mortality, weight loss and sarcopenia were the main outcomes measured. The presence of chronic low-grade inflammation did not affect post-infection mortality, body weight loss and tissue mass decreases. Infection-induced modifications of plasma acute phase proteins concentrations were not higher in low-grade inflamed than non-inflamed rats. Absolute synthesis rates of tissue proteins were independent of the initial inflammatory status, except for liver 10 days after infection. Altogether, age-associated chronic low-grade inflammation in male rats did not worsen the body response to bacterial infection. These results suggest that chronic low-grade inflammation is not an aggravating factor of the spiraling process leading to frailty.


Assuntos
Envelhecimento/fisiologia , Infecções Bacterianas/fisiopatologia , Inflamação/fisiopatologia , Idoso de 80 Anos ou mais , Animais , Infecções Bacterianas/patologia , Doença Crônica , Feminino , Idoso Fragilizado , Humanos , Inflamação/patologia , Masculino , Tamanho do Órgão , Proteínas/metabolismo , Ratos , Ratos Wistar , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Taxa de Sobrevida , Síndrome
12.
J Cardiovasc Pharmacol ; 58(3): 284-94, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21697734

RESUMO

Cariporide, an Na/H exchanger inhibitor, is a drug with cardioprotective properties. However, chronic treatment with cariporide may modify the protein phenotype of the cardiomyocytes. Disruption of the equilibrium between a cariporide-modified phenotype and the supply of cariporide could be deleterious. The aim of this study was to test the effects of this equilibrium rupture (EqR) on cardiac function at baseline and acute ischemia reperfusion. Rats were chronically treated with cariporide (2.5 mg·kg·d) or with placebo for 21 days, after which isolated Langendorff-mode heart perfusion experiments utilized cariporide-free buffer. During this type of perfusion, the drug is rapidly cleared from the cellular environment. After 30 minutes of stabilization, the hearts were subjected to global zero-flow ischemia (25 minutes) followed by reperfusion (45 minutes). Measures of mechanical function, oxygen consumption, lactate plus pyruvate, CO2 and proton release into the coronary effluent were determined. The gene and protein expression of proton extruders was also evaluated. Chronic cariporide administration followed by EqR reduced the expression of the Na/H exchanger, increased the expression of the HCO3 or Na exchanger, decreased monocarboxylate/H carrier expression, reduced the lactate plus pyruvate release but did not change the glucose oxidation rate and mechanical function compared with baseline conditions. The resulting low glycolytic rate was associated with a stronger contracture during ischemia. During reperfusion, the early release of acidic forms was higher and redirected toward the use of the Na/H and HCO3 /Na exchangers to the detriment of the safe monocarboxylate/H carrier. Both phenomena were assumed to increase the Na uptake and activate the Na/Ca exchanger, resulting in Na and Ca overload and further cellular damage. This explains the impaired recovery of the contractile function observed in the EqR group during reperfusion. In conclusion, although cariporide is usually cardioprotective, a disruption of its chronic treatment followed by an ischemia/reperfusion event can become deleterious.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/prevenção & controle , Cardiotônicos/farmacologia , Guanidinas/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Sulfonas/farmacologia , Animais , Antiarrítmicos/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Análise Química do Sangue , Cardiotônicos/metabolismo , Esquema de Medicação , Guanidinas/metabolismo , Testes de Função Cardíaca , Homeostase/efeitos dos fármacos , Masculino , Transportadores de Ácidos Monocarboxílicos/biossíntese , Transportadores de Ácidos Monocarboxílicos/genética , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Simportadores de Sódio-Bicarbonato/biossíntese , Simportadores de Sódio-Bicarbonato/genética , Trocadores de Sódio-Hidrogênio/genética , Sulfonas/metabolismo , Simportadores/biossíntese , Simportadores/genética , Fatores de Tempo
13.
Nutrients ; 13(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34959754

RESUMO

This study evaluates the capacity of a bread enriched with fermentable dietary fibres to modulate the metabolism and nutrients handling between tissues, gut and peripheral, in a context of overfeeding. Net fluxes of glucose, lactate, urea, short chain fatty acids (SCFA), and amino acids were recorded in control and overfed female mini-pigs supplemented or not with fibre-enriched bread. SCFA in fecal water and gene expressions, but not protein levels or metabolic fluxes, were measured in muscle, adipose tissue, and intestine. Fibre supplementation increased the potential for fatty acid oxidation and mitochondrial activity in muscle (acox, ucp2, sdha and cpt1-m, p < 0.05) as well as main regulatory transcription factors of metabolic activity such as pparα, pgc-1α and nrf2. All these features were associated with a reduced muscle fibre cross sectional area, resembling to controls (i.e., lean phenotype). SCFA may be direct inducers of these cross-talk alterations, as their feces content (+52%, p = 0.05) was increased in fibre-supplemented mini-pigs. The SCFA effects could be mediated at the gut level by an increased production of incretins (increased gcg mRNA, p < 0.05) and an up-regulation of SCFA receptors (increased gpr41 mRNA, p < 0.01). Hence, consumption of supplemented bread with fermentable fibres can be an appropriate strategy to activate muscle energy catabolism and limit the establishment of an obese phenotype.


Assuntos
Tecido Adiposo/metabolismo , Fibras na Dieta/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hipernutrição/metabolismo , Aminoácidos/metabolismo , Animais , Pão , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Feminino , Alimentos Fermentados , Glucose/metabolismo , Incretinas/metabolismo , Intestinos/metabolismo , Ácido Láctico/metabolismo , Suínos , Porco Miniatura , Ureia/metabolismo
14.
EBioMedicine ; 69: 103440, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34161887

RESUMO

BACKGROUND: Metabolic syndrome (MetS), a cluster of factors associated with risks of developing cardiovascular diseases, is a public health concern because of its growing prevalence. Considering the combination of concomitant components, their development and severity, MetS phenotypes are largely heterogeneous, inducing disparity in diagnosis. METHODS: A case/control study was designed within the NuAge longitudinal cohort on aging. From a 3-year follow-up of 123 stable individuals, we present a deep phenotyping approach based on a multiplatform metabolomics and lipidomics untargeted strategy to better characterize metabolic perturbations in MetS and define a comprehensive MetS signature stable over time in older men. FINDINGS: We characterize significant changes associated with MetS, involving modulations of 476 metabolites and lipids, and representing 16% of the detected serum metabolome/lipidome. These results revealed a systemic alteration of metabolism, involving various metabolic pathways (urea cycle, amino-acid, sphingo- and glycerophospholipid, and sugar metabolisms…) not only intrinsically interrelated, but also reflecting environmental factors (nutrition, microbiota, physical activity…). INTERPRETATION: These findings allowed identifying a comprehensive MetS signature, reduced to 26 metabolites for future translation into clinical applications for better diagnosing MetS. FUNDING: The NuAge Study was supported by a research grant from the Canadian Institutes of Health Research (CIHR; MOP-62842). The actual NuAge Database and Biobank, containing data and biologic samples of 1,753 NuAge participants (from the initial 1,793 participants), are supported by the Fonds de recherche du Québec (FRQ; 2020-VICO-279753), the Quebec Network for Research on Aging, a thematic network funded by the Fonds de Recherche du Québec - Santé (FRQS) and by the Merck-Frost Chair funded by La Fondation de l'Université de Sherbrooke. All metabolomics and lipidomics analyses were funded and performed within the metaboHUB French infrastructure (ANR-INBS-0010). All authors had full access to the full data in the study and accept responsibility to submit for publication.


Assuntos
Envelhecimento/metabolismo , Síndrome Metabólica/metabolismo , Metaboloma , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Síndrome Metabólica/sangue , Metabolômica/métodos
15.
Metabolites ; 9(9)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438611

RESUMO

Lack of reliable peak detection impedes automated analysis of large-scale gas chromatography-mass spectrometry (GC-MS) metabolomics datasets. Performance and outcome of individual peak-picking algorithms can differ widely depending on both algorithmic approach and parameters, as well as data acquisition method. Therefore, comparing and contrasting between algorithms is difficult. Here we present a workflow for improved peak picking (WiPP), a parameter optimising, multi-algorithm peak detection for GC-MS metabolomics. WiPP evaluates the quality of detected peaks using a machine learning-based classification scheme based on seven peak classes. The quality information returned by the classifier for each individual peak is merged with results from different peak detection algorithms to create one final high-quality peak set for immediate down-stream analysis. Medium- and low-quality peaks are kept for further inspection. By applying WiPP to standard compound mixes and a complex biological dataset, we demonstrate that peak detection is improved through the novel way to assign peak quality, an automated parameter optimisation, and results in integration across different embedded peak picking algorithms. Furthermore, our approach can provide an impartial performance comparison of different peak picking algorithms. WiPP is freely available on GitHub (https://github.com/bihealth/WiPP) under MIT licence.

16.
J Nutr Biochem ; 65: 72-82, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30654277

RESUMO

Obesity induced by overfeeding ultimately can lead to nonalcoholic fatty liver disease, whereas dietary fiber consumption is known to have a beneficial effect. We aimed to determine if a supplementation of a mix of fibers (inulin, resistant starch and pectin) could limit or alleviate overfeeding-induced metabolic perturbations. Twenty female minipigs were fed with a control diet (C) or an enriched fat/sucrose diet supplemented (O + F) or not (O) with fibers. Between 0 and 56 days of overfeeding, insulin (+88%), HOMA (+102%), cholesterol (+45%) and lactate (+63%) were increased, without any beneficial effect of fibers supplementation. However, fibers supplementation limited body weight gain (vs. O, -15% at D56) and the accumulation of hepatic lipids droplets induced by overfeeding. This could be explained by a decreased lipids transport potential (-50% FABP1 mRNA, O + F vs. O) inducing a down-regulation of regulatory elements of lipids metabolism / lipogenesis (-36% SREBP1c mRNA, O + F vs. O) but not to an increased oxidation (O + F not different from O and C for proteins and mRNA measured). Glucose metabolism was also differentially regulated by fibers supplementation, with an increased net hepatic release of glucose in the fasted state (diet × time effect, P<.05 at D56) that can be explained partially by a possible increased glycogen synthesis in the fed state (+82% GYS2 protein, O + F vs. O, P=.09). The direct role of short chain fatty acids on gluconeogenesis stimulation is questioned, with probably a short-term impact (D14) but no effect on a long-term (D56) basis.


Assuntos
Fibras na Dieta/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hipernutrição/dietoterapia , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Feminino , Fermentação , Regulação da Expressão Gênica/efeitos dos fármacos , Inulina/farmacologia , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Hipernutrição/etiologia , Pectinas/farmacologia , Proteínas/genética , Proteínas/metabolismo , Sacarose/efeitos adversos , Suínos , Porco Miniatura
17.
Mol Nutr Food Res ; 63(1): e1800384, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30176196

RESUMO

The life sciences are currently being transformed by an unprecedented wave of developments in molecular analysis, which include important advances in instrumental analysis as well as biocomputing. In light of the central role played by metabolism in nutrition, metabolomics is rapidly being established as a key analytical tool in human nutritional studies. Consequently, an increasing number of nutritionists integrate metabolomics into their study designs. Within this dynamic landscape, the potential of nutritional metabolomics (nutrimetabolomics) to be translated into a science, which can impact on health policies, still needs to be realized. A key element to reach this goal is the ability of the research community to join, to collectively make the best use of the potential offered by nutritional metabolomics. This article, therefore, provides a methodological description of nutritional metabolomics that reflects on the state-of-the-art techniques used in the laboratories of the Food Biomarker Alliance (funded by the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL)) as well as points of reflections to harmonize this field. It is not intended to be exhaustive but rather to present a pragmatic guidance on metabolomic methodologies, providing readers with useful "tips and tricks" along the analytical workflow.


Assuntos
Biomarcadores/análise , Processamento Eletrônico de Dados/métodos , Metabolômica/métodos , Ciências da Nutrição/métodos , Cromatografia/métodos , Mineração de Dados , Ingestão de Alimentos , Prova Pericial , Análise de Alimentos , Humanos , Modelos Estatísticos , Análise Multivariada , Estado Nutricional , Reprodutibilidade dos Testes
18.
Methods Mol Biol ; 1730: 239-246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29363077

RESUMO

GC/MS-based metabolomics is a powerful tool for metabolic phenotyping and biomarker discovery from body biofluids. In this chapter, we describe an untargeted metabolomic approach for plasma/serum and fecal water sample profiling. It describes a multistep procedure, from sample preparation, oximation/silylation derivatization, and data acquisition using GC/QToF to data processing consisting in data extraction and identification of metabolites.


Assuntos
Líquidos Corporais/química , Metabolômica/métodos , Biomarcadores/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Software
19.
Food Funct ; 9(12): 6526-6534, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30475369

RESUMO

With aging, skeletal muscle becomes resistant to the anabolic effect of dietary proteins and sarcopenia develops. Animal proteins, which are rich in leucine, are recommended for the elderly, but it is not known whether their replacement by plant proteins would maintain the health and physical independence of this population. Aged rats were fed with animal proteins (casein and whey proteins) with different leucine contents and compared to rats fed with diets in which whey was substituted with soy proteins and by increasing the total protein content or not. Our results clearly showed that the meal with mixed soy/whey proteins allowed the anabolic response of skeletal muscle during aging only if the protein content was increased by 25%. Indeed, if the protein content of the soy/whey diet was decreased to a similar protein content such as a whey diet, i.e. 13%, the anabolic effect decreased. The same observation was recorded if the whey proteins were totally substituted with soy proteins.


Assuntos
Envelhecimento/metabolismo , Proteínas Alimentares/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Proteínas de Soja/metabolismo , Proteínas do Soro do Leite/metabolismo , Animais , Proteínas Alimentares/análise , Humanos , Leucina/análise , Leucina/metabolismo , Masculino , Ratos , Ratos Wistar , Proteínas de Soja/química , Proteínas do Soro do Leite/química
20.
Food Funct ; 9(5): 2922-2930, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29741190

RESUMO

Little is still known about brain protein synthesis. In order to increase our knowledge of it, we aimed to modulate brain protein synthesis rates through aging, variations in nutritional state (fed state vs. fasted state), high sucrose diet and micronutrient supplementation. Four groups of 16 month-old male rats were fed for five months with a diet containing either 13% or 62% sucrose (wheat starch was replaced with sucrose), supplemented or not with rutin (5 g kg-1 diet), vitamin E (4×), A (2×), D (5×), selenium (10×) and zinc (+44%) and compared with an adult control group. We measured cerebellum protein synthesis and hippocampus gene expression of antioxidant enzymes, inflammatory cytokines and transcription factors. We showed that cerebellum protein synthesis was unchanged by the nutritional state, decreased during aging (-8%), and restored to the adult level by micronutrient supplementation. Sucrose diet did not change protein synthesis but reduced the protein content. Micronutrient supplementation had no effect in sucrose fed rats. Hippocampus gene expressions were affected by age (an increase of TNF-α), sucrose treatment (an increase of IL-1ß and IL-6), and micronutrient supplementation (a decrease of heme oxygenase, catalase, glutathione peroxidase, TNF-α, and Nrf2). We noted that cerebellum protein synthesis and hippocampus TNF-α gene expression were modulated by the same factors: they were affected by aging and micronutrient supplementation and unchanged by feeding and by high sucrose diet.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Sacarose Alimentar/metabolismo , Micronutrientes/metabolismo , Biossíntese de Proteínas , Rutina/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Sacarose Alimentar/efeitos adversos , Suplementos Nutricionais/análise , Hipocampo/efeitos dos fármacos , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Micronutrientes/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estado Nutricional , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Wistar , Rutina/farmacologia , Selênio/metabolismo , Selênio/farmacologia , Vitamina A/metabolismo , Vitamina A/farmacologia , Vitamina D/metabolismo , Vitamina D/farmacologia , Vitamina E/metabolismo , Vitamina E/farmacologia , Zinco/metabolismo , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa