Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(8): e18301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652212

RESUMO

X-linked nephrogenic diabetes insipidus (X-NDI) is a rare congenital disease caused by inactivating mutations of the vasopressin type-2 receptor (AVPR2), characterized by impaired renal concentrating ability, dramatic polyuria, polydipsia and risk of dehydration. The disease, which still lacks a cure, could benefit from the pharmacologic stimulation of other GPCRs, activating the cAMP-intracellular pathway in the kidney cells expressing the AVPR2. On the basis of our previous studies, we here hypothesized that the ß3-adrenergic receptor could be such an ideal candidate. We evaluated the effect of continuous 24 h stimulation of the ß3-AR with the agonist BRL37344 and assessed the effects on urine output, urine osmolarity, water intake and the abundance and activation of the key renal water and electrolyte transporters, in the mouse model of X-NDI. Here we demonstrate that the ß3-AR agonism exhibits a potent antidiuretic effect. The strong improvement in symptoms of X-NDI produced by a single i.p. injection of BRL37344 (1 mg/kg) was limited to 3 h but repeated administrations in the 24 h, mimicking the effect of a slow-release preparation, promoted a sustained antidiuretic effect, reducing the 24 h urine output by 27%, increasing urine osmolarity by 25% and reducing the water intake by 20%. At the molecular level, we show that BRL37344 acted by increasing the phosphorylation of NKCC2, NCC and AQP2 in the renal cell membrane, thereby increasing electrolytes and water reabsorption in the kidney tubule of X-NDI mice. Taken together, these data suggest that human ß3-AR agonists might represent an effective possible treatment strategy for X-NDI.


Assuntos
Agonistas de Receptores Adrenérgicos beta 3 , Masculino , Animais , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Agonistas de Receptores Adrenérgicos beta 3/uso terapêutico , Antidiuréticos/farmacologia , Antidiuréticos/uso terapêutico , Capacidade de Concentração Renal/efeitos dos fármacos , Polidipsia/tratamento farmacológico , Polidipsia/etiologia
2.
Front Physiol ; 15: 1304375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455846

RESUMO

Efferent sympathetic nerve fibers regulate several renal functions activating norepinephrine receptors on tubular epithelial cells. Of the beta-adrenoceptors (ß-ARs), we previously demonstrated the renal expression of ß3-AR in the thick ascending limb (TAL), the distal convoluted tubule (DCT), and the collecting duct (CD), where it participates in salt and water reabsorption. Here, for the first time, we reported ß3-AR expression in the CD intercalated cells (ICCs), where it regulates acid-base homeostasis. Co-localization of ß3-AR with either proton pump H+-ATPase or Cl-/HCO3 - exchanger pendrin revealed ß3-AR expression in type A, type B, non-A, and non-B ICCs in the mouse kidney. We aimed to unveil the possible regulatory role of ß3-AR in renal acid-base homeostasis, in particular in modulating the expression, subcellular localization, and activity of the renal H+-ATPase, a key player in this process. The abundance of H+-ATPase was significantly decreased in the kidneys of ß3-AR-/- compared with those of ß3-AR+/+ mice. In particular, H+-ATPase reduction was observed not only in the CD but also in the TAL and DCT, which contribute to acid-base transport in the kidney. Interestingly, we found that in in vivo, the absence of ß3-AR reduced the kidneys' ability to excrete excess proton in the urine during an acid challenge. Using ex vivo stimulation of mouse kidney slices, we proved that the ß3-AR activation promoted H+-ATPase apical expression in the epithelial cells of ß3-AR-expressing nephron segments, and this was prevented by ß3-AR antagonism or PKA inhibition. Moreover, we assessed the effect of ß3-AR stimulation on H+-ATPase activity by measuring the intracellular pH recovery after an acid load in ß3-AR-expressing mouse renal cells. Importantly, ß3-AR agonism induced a 2.5-fold increase in H+-ATPase activity, and this effect was effectively prevented by ß3-AR antagonism or by inhibiting either H+-ATPase or PKA. Of note, in urine samples from patients treated with a ß3-AR agonist, we found that ß3-AR stimulation increased the urinary excretion of H+-ATPase, likely indicating its apical accumulation in tubular cells. These findings demonstrate that ß3-AR activity positively regulates the expression, plasma membrane localization, and activity of H+-ATPase, elucidating a novel physiological role of ß3-AR in the sympathetic control of renal acid-base homeostasis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa