Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Mol Histol ; 55(4): 465-479, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850447

RESUMO

Zinc (Zn) is a normal trace element in mineralizing tissues, but it is unclear whether it is primarily bound to the mineral phase or to organic molecules involved in the mineralization process, or both. Tissue-nonspecific alkaline phosphatase (TNAP) is a Zn metalloenzyme with two Zn ions bound to the M1 and M2 catalytic sites that functions to control the phosphate/pyrophosphate ratio during biomineralization. Here, we studied aortas from Tagln-Cre +/-; HprtALP/Y TNAP overexpressor (TNAP-OE) mice that develop severe calcification. Zn histochemistry was performed using the sulfide-silver staining method in combination with a Zn partial extraction procedure to localize mineral-bound (mineral Zn) and TNAP-bound Zn (tenacious Zn), since soluble Zn (loose Zn) is extracted during fixation of the specimens. Two synthetic bone mineral composites with different Zn content, bone ash, and rat epiphyseal growth plate cartilage were used as controls for Zn staining. In order to correlate the distribution of mineral and tenacious Zn with the presence of mineral deposits, the aortas were examined histologically in unstained and stained thin sections using various light microscopy techniques. Our results show that 14 and 30 dpn, TNAP is concentrated in the calcifying matrix and loses Zn as Ca2+ progressively displaces Zn2+ at the M1 and M2 metal sites. Thus, in addition to its catalytic role TNAP has an additional function at calcifying sites as a Ca-binding protein.


Assuntos
Fosfatase Alcalina , Aorta , Zinco , Animais , Fosfatase Alcalina/metabolismo , Zinco/metabolismo , Camundongos , Aorta/patologia , Aorta/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Calcinose/metabolismo , Calcinose/patologia , Ratos , Cálcio/metabolismo
2.
JBMR Plus ; 8(2): ziae006, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38505526

RESUMO

Tissue-nonspecific alkaline phosphatase (TNALP) is a glycoprotein expressed by osteoblasts that promotes bone mineralization. TNALP catalyzes the hydrolysis of the mineralization inhibitor inorganic pyrophosphate and ATP to provide inorganic phosphate, thus controlling the inorganic pyrophosphate/inorganic phosphate ratio to enable the growth of hydroxyapatite crystals. N-linked glycosylation of TNALP is essential for protein stability and enzymatic activity and is responsible for the presence of different bone isoforms of TNALP associated with functional and clinical differences. The site-specific glycosylation profiles of TNALP are, however, elusive. TNALP has 5 potential N-glycosylation sites located at the asparagine (N) residues 140, 230, 271, 303, and 430. The objective of this study was to reveal the presence and structure of site-specific glycosylation in TNALP expressed in osteoblasts. Calvarial osteoblasts derived from Alpl+/- expressing SV40 Large T antigen were transfected with soluble epitope-tagged human TNALP. Purified TNALP was analyzed with a lectin microarray, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and liquid chromatography with tandem mass spectrometry. The results showed that all sites (n = 5) were fully occupied predominantly with complex-type N-glycans. High abundance of galactosylated biantennary N-glycans with various degrees of sialylation was observed on all sites, as well as glycans with no terminal galactose and sialic acid. Furthermore, all sites had core fucosylation except site N271. Modelling of TNALP, with the protein structure prediction software ColabFold, showed possible steric hindrance by the adjacent side chain of W270, which could explain the absence of core fucosylation at N271. These novel findings provide evidence for N-linked glycosylation on all 5 sites of TNALP, as well as core fucosylation on 4 out of 5 sites. We anticipate that this new knowledge can aid in the development of functional and clinical assays specific for the TNALP bone isoforms.

3.
Biochim Biophys Acta Biomembr ; 1866(4): 184292, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342362

RESUMO

Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) is an enzyme present in matrix vesicles (MV). NPP1 participates on the regulation of bone formation by producing pyrophosphate (PPi) from adenosine triphosphate (ATP). Here, we have used liposomes bearing dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), and cholesterol (Chol) harboring NPP1 to mimic the composition of MV lipid rafts to investigate ionic and lipidic influence on NPP1 activity and mineral propagation. Atomic force microscopy (AFM) revealed that DPPC-liposomes had spherical and smooth surface. The presence of SM and Chol elicited rough and smooth surface, respectively. NPP1 insertion produced protrusions in all the liposome surface. Maximum phosphodiesterase activity emerged at 0.082 M ionic strength, whereas maximum phosphomonohydrolase activity arose at low ionic strength. Phosphoserine-Calcium Phosphate Complex (PS-CPLX) and amorphous calcium-phosphate (ACP) induced mineral propagation in DPPC- and DPPC:SM-liposomes and in DPPC:Chol-liposomes, respectively. Mineral characterization revealed the presence of bands assigned to HAp in the mineral propagated by NPP1 harbored in DPPC-liposomes without nucleators or in DPPC:Chol-liposomes with ACP nucleators. These data show that studying how the ionic and lipidic environment affects NPP1 properties is important, especially for HAp obtained under controlled conditions in vitro.


Assuntos
Lipossomos , Diester Fosfórico Hidrolases , Monoéster Fosfórico Hidrolases , Fosfatos de Cálcio/química , Íons , Lipossomos/química , Minerais , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Esfingomielinas , Pirofosfatases/química , Pirofosfatases/metabolismo
4.
J Am Dent Assoc ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39127957

RESUMO

BACKGROUND: Mineral metabolism is critical for proper development of hard tissues of the skeleton and dentition. The dentoalveolar complex includes the following 4 mineralized tissues: enamel, dentin, cementum, and alveolar bone. Developmental processes of these tissues are affected by inherited disorders that disrupt phosphate and pyrophosphate homeostasis, although manifestations are distinct from those in the skeleton. TYPES OF STUDIES REVIEWED: The authors discuss original data from experiments and comparative analyses and review articles describing effects of inherited phosphate and pyrophosphate disorders on dental tissues. A particular emphasis is placed on how new therapeutic approaches for these conditions may affect oral health and dental treatments of affected patients. RESULTS: Disorders of phosphate and pyrophosphate metabolism can lead to reduced mineralization (hypomineralization) or inappropriate (ectopic) calcification of soft tissues. Disruptions in phosphate levels in X-linked hypophosphatemia and hyperphosphatemic familial tumoral calcinosis and disruptions in pyrophosphate levels in hypophosphatasia and generalized arterial calcification of infancy contribute to dental mineralization defects. Traditionally, there have been few options to ameliorate dental health problems arising from these conditions. New antibody and enzyme replacement therapies bring possibilities to improve oral health in affected patients. PRACTICAL IMPLICATIONS: Research over the past 2 decades has exponentially expanded the understanding of mineral metabolism, and has led to novel treatments for mineralization disorders. Newly implemented and emerging therapeutic strategies affect the dentoalveolar complex and interact with aspects of oral health care that must be considered for dental treatment, clinical trial design, and coordination of multidisciplinary care teams.

5.
Biomolecules ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38254642

RESUMO

Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts, and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles) and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or bone or cartilage tissues to an enzymatic treatment. Several pieces of experimental evidence indicated that matrix vesicles and media vesicles isolated from the same types of mineralizing cells have distinct lipid and protein composition as well as functions. These findings support the view that matrix vesicles and media vesicles released by mineralizing cells have different functions in mineralized tissues due to their location, which is anchored to the extracellular matrix versus free-floating.


Assuntos
Calcinose , Vesículas Extracelulares , Humanos , Matriz Extracelular , Condrócitos , Hipertrofia
6.
J Extracell Biol ; 1(1): e34, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38938684

RESUMO

Extracellular vesicles (EVs) are lipid bilayer-enclosed nanosized particles released by all cell types during physiological as well as pathophysiological processes to carry out diverse biological functions, including acting as sources of cellular dumping, signalosomes and mineralisation nanoreactors. The ability of EVs to perform specific biological functions is due to their biochemical machinery. Among the components of the EVs' biochemical machinery, surface proteins are of critical functional significance as they mediate the interactions of EVs with components of the extracellular milieu, the extracellular matrix and neighbouring cells. Surface proteins are thought to be native, that is, pre-assembled on the EVs' surface by the parent cells before the vesicles are released. However, numerous pieces of evidence have suggested that soluble proteins are acquired by the EVs' surface from the extracellular milieu and further modulate the biological functions of EVs during innate and adaptive immune responses, autoimmune disorders, complement activation, coagulation, viral infection and biomineralisation. Herein, we will describe the methods currently used to identify the EVs' surface proteins and discuss recent knowledge on the functional relevance of the soluble proteins acquired by EVs.

7.
J Extracell Biol ; 1(4): e38, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38939118

RESUMO

Matrix vesicles (MVs) are 100-300 nm spherical structures released by mineralization competent cells to initiate formation of apatite, the mineral component in bones. Among proteins present in MVs, annexin A6 (AnxA6) is thought to be ubiquitously distributed in the MVs' lumen, on the surface of the internal and external leaflets of the membrane and also inserted in the lipid bilayer. To determine the molecular mechanism(s) that lead to the different locations of AnxA6, we hypothesized the occurrence of a pH drop during the mineralization. Such a change would induce the AnxA6 protonation, which in turn, and because of its isoelectric point of 5.41, would change the protein hydrophobicity facilitating its insertion into the MVs' bilayer. The various distributions of AnxA6 are likely to disturb membrane phospholipid organization. To examine this possibility, we used fluorescein as pH reporter, and established that pH decreased inside MVs during apatite formation. Then, 4-(14-phenyldibenzo[a,c]phenazin-9(14H)-yl)-phenol, a vibration-induced emission fluorescent probe, was used as a reporter of changes in membrane organization occurring with the varying mode of AnxA6 binding. Proteoliposomes containing AnxA6 and 1,2-Dimyristoyl-sn-glycero-3phosphocholine (DMPC) or 1,2-Dimyristoyl-sn-glycero-3phosphocholine: 1,2-Dipalmitoyl-sn-glycero-3-phosphoserine (DMPC:DPPS 9:1), to mimic the external and internal MV membrane leaflet, respectively, served as biomimetic models to investigate the nature of AnxA6 binding. Addition of Anx6 to DMPC at pH 7.4 and 5.4, or DMPC:DPPS (9:1) at pH 7.4 induced a decrease in membrane fluidity, consistent with AnxA6 interactions with the bilayer surface. In contrast, AnxA6 addition to DMPC:DPPS (9:1) at pH 5.4 increased the fluidity of the membrane. This latest result was interpreted as reflecting the insertion of AnxA6 into the bilayer. Taken together, these findings point to a possible mechanism of AnxA6 translocation in MVs from the surface of the internal leaflet into the phospholipid bilayer stimulated upon acidification of the MVs' lumen during formation of apatite.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa