Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Res Natl Inst Stand Technol ; 126: 126034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-39015627

RESUMO

Limited sources exist for the application of germicidal ultraviolet (GUV) radiation. Ultraviolet light-emitting diodes (UV-LEDs) have significantly improved in efficiency and are becoming another viable source for GUV. We have developed a mean differential continuous pulse method (M-DCP method) for optical measurements of light-emitting diodes (LEDs) and laser diodes (LDs). The new M-DCP method provides an improvement on measurement uncertainty by one order of magnitude compared to the unpublished differential continuous pulse method (DCP method). The DCP method was already a significant improvement of the continuous pulse method (CP method) commonly used in the LED industry. The new M-DCP method also makes it possible to measure UV-LEDs with high accuracy. Here, we present the DCP method, discuss the potential systematic error sources in it, and present the M-DCP method along with its reduced systematic errors. This paper also presents the results of validation measurement of LEDs using the M-DCP method and common test instruments.

2.
J Res Natl Inst Stand Technol ; 126: 126055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38469448

RESUMO

The development of an international, precompetitive, collaborative, ultraviolet (UV) research consortium is discussed as an opportunity to lay the groundwork for a new UV commercial industry and the supply chain to support this industry. History has demonstrated that consortia can offer promising approaches to solve many common, current industry challenges, such as the paucity of data regarding the doses of ultraviolet-C (UV-C, 200 nm to 280 nm) radiation necessary to achieve the desired reductions in healthcare pathogens and the ability of mobile disinfection devices to deliver adequate doses to the different types of surfaces in a whole-room environment. Standard methods for testing are only in the initial stages of development, making it difficult to choose a specific UV-C device for a healthcare application. Currently, the public interest in UV-C disinfection applications is elevated due to the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the respiratory coronavirus disease 19 (COVID-19). By channeling the expertise of different UV industry stakeholder sectors into a unified international consortium, innovation in UV measurements and data could be developed to support test methods and standards development for UV healthcare equipment. As discussed in this paper, several successful examples of consortia are applicable to the UV industry to help solve these types of common problems. It is anticipated that a consortium for the industry could lead to UV applications for disinfection becoming globally prolific and commonplace in residential, work, business, and school settings as well as in transportation (bus, rail, air, ship) environments. Aggressive elimination of infectious agents by UV-C technologies would also help to reduce the evolution of antibiotic-resistant bacteria.

3.
J Res Natl Inst Stand Technol ; 126: 126014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38469449

RESUMO

The National Institute of Standards and Technology (NIST) hosted an international workshop on ultraviolet-C (UV-C) disinfection technologies on January 14-15, 2020, in Gaithersburg, Maryland, in collaboration with the International Ultraviolet Association (IUVA). This successful public event, as evidenced by the participation of more than 150 attendees, with 65% from the ultraviolet technology industry, was part of an ongoing collaborative effort between NIST and the IUVA and its affiliates to examine the measurement and standards needs for pathogen abatement with UV-C in the healthcare whole-room environment. Prior to and since this event, stakeholders from industry, academia, government, and public health services have been collaboratively engaged with NIST to accelerate the development and use of accurate measurements and models for UV-C disinfection technologies and facilitate technology transfer. The workshop served as an open forum to continue this discussion with a technical focus centered on the effective design, use, and implementation of UV-C technologies for the prevention and treatment of healthcare-associated infections (HAIs) in complex hospital settings. These settings include patient rooms, operating rooms, common staging areas, ventilation systems, personal protective equipment, and tools for the reprocessing and disinfecting of instruments or devices used in medical procedures, such as catheters and ventilators. The critical need for UV-C technologies for disinfection has been amplified by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), stimulating an even greater emphasis on identifying testing and performance metrology needs. This paper discusses these topics based on the international workshop and community activities since the workshop, including a public World-Wide-Web-based seminar with more than 500 registered attendees on September 30, 2020; an international conference on UV-C technologies for air and surface disinfection, December 8-9, 2020; and a webinar on returning to normalcy with the use of UV-C technologies, April 27 and 29, 2021. This article also serves as an introduction to a special section of the Journal of Research of the National Institute of Standards and Technology, where full papers address recent technical, noncommercial, UV-C technology and pathogen-abatement investigations. The set of papers provides keen insights from the vantage points of medicine and industry. Recent technical developments, successes, and needs in optics and photonics, radiation physics, biological efficacy, and the needs of future markets in UV-C technologies are described to provide a concise compilation of the community's efforts and the state of the field. Standards needs are identified and discussed throughout this special section. This article provides a summary of the essential role of standards for innovation and implementation of UV-C technology for improved patient care and public health.

4.
Photochem Photobiol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032065

RESUMO

In 2015, a study showed that Krypton-Chloride (KrCl) excimer lamps could induce erythema and basal layer DNA damage in human skin. Later studies found that filtering out longer wavelength emissions from these lamps resulted in no acute skin effects. However, there is a limited understanding of how much to reduce unwanted emissions and which wavelengths are important. Accurate spectral irradiance data is therefore crucial for safety, as variance in optical filtering significantly affects the weighted irradiance of a lamp. To simplify the risk assessment process for Far-UVC lamps, we highlight the usefulness of the lamp exposure limit (HLEL) and present this in the context of spectral emission data for 14 commercially available Far-UVC lamps. Our results demonstrate that relying solely on a radiometric measurement and a single-wavelength exposure limit at 222 nm could lead to over-exposure. The HLEL is a practical metric which can be utilized to determine the exposure time before reaching the exposure limit. It can also be used in the determination of the minimum ceiling height for compliance with standards like UL 8802. Manufacturers are urged to provide HLEL for their products; installers should adhere to HLEL; and standards and regulatory bodies should insist on this information in new guidance.

5.
Addit Manuf ; 842024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567361

RESUMO

The working curve informs resin properties and print parameters for stereolithography, digital light processing, and other photopolymer additive manufacturing (PAM) technologies. First demonstrated in 1992, the working curve measurement of cure depth vs radiant exposure of light is now a foundational measurement in the field of PAM. Despite its widespread use in industry and academia, there is no formal method or procedure for performing the working curve measurement, raising questions about the utility of reported working curve parameters. Here, an interlaboratory study (ILS) is described in which 24 individual laboratories performed a working curve measurement on an aliquot from a single batch of PAM resin. The ILS reveals that there is enormous scatter in the working curve data and the key fit parameters derived from it. The measured depth of light penetration Dp varied by as much as 7x between participants, while the critical radiant exposure for gelation Ec varied by as much as 70x. This significant scatter is attributed to a lack of common procedure, variation in light engines, epistemic uncertainties from the Jacobs equation, and the use of measurement tools with insufficient precision. The ILS findings highlight an urgent need for procedural standardization and better hardware characterization in this rapidly growing field.

6.
Leukos ; 13(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-38618580

RESUMO

The National Institute of Standards and Technology (NIST) began to offer proficiency testing for Solid-State Lighting (SSL) products through a Measurement Assurance Program (MAP) in 2010. The MAP program provided proficiency testing complimenting laboratory accreditation to ensure that as SSL products became more prevalent, capable testing laboratories would be available to handle the volume of measurement work. This article communicates the results of the first version of the MAP in which 118 worldwide laboratories participated. The results of the comparison provide a snapshot of the capabilities of accredited laboratories worldwide. Statistical analysis of how the laboratories' measurements compared to NIST's measurements for photometric, colorimetric, and electrical quantities and fit parameters for each measurement are presented. In general, all the laboratory results are within +/- 4 % for total luminous flux and luminous efficacy measurements. The discussion provides reasons for any discrepancies or large uncertainty intervals found in the data. For example, a major finding was that measured differences of RMS current had a larger standard deviation and number of outliers than expected. Two possible explanations are (1) the discrepancies are due to issues with using 4-pole sockets, and (2) the large deviation is caused by some solid state lamps being sensitive to impedance and slew rate of AC power supplies. Further research in this area is being conducted by NIST to help the testing community reach more consistent measurement results.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa