Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 529(7586): 377-82, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26751057

RESUMO

Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

2.
Sensors (Basel) ; 22(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36016077

RESUMO

The primary aim of this study was to examine the validity of six commonly used wearable devices, i.e., Apple Watch S6, Garmin Forerunner 245 Music, Polar Vantage V, Oura Ring Generation 2, WHOOP 3.0 and Somfit, for assessing sleep. The secondary aim was to examine the validity of the six devices for assessing heart rate and heart rate variability during, or just prior to, night-time sleep. Fifty-three adults (26 F, 27 M, aged 25.4 ± 5.9 years) spent a single night in a sleep laboratory with 9 h in bed (23:00-08:00 h). Participants were fitted with all six wearable devices-and with polysomnography and electrocardiography for gold-standard assessment of sleep and heart rate, respectively. Compared with polysomnography, agreement (and Cohen's kappa) for two-state categorisation of sleep periods (as sleep or wake) was 88% (κ = 0.30) for Apple Watch; 89% (κ = 0.35) for Garmin; 87% (κ = 0.44) for Polar; 89% (κ = 0.51) for Oura; 86% (κ = 0.44) for WHOOP and 87% (κ = 0.48) for Somfit. Compared with polysomnography, agreement (and Cohen's kappa) for multi-state categorisation of sleep periods (as a specific sleep stage or wake) was 53% (κ = 0.20) for Apple Watch; 50% (κ = 0.25) for Garmin; 51% (κ = 0.28) for Polar; 61% (κ = 0.43) for Oura; 60% (κ = 0.44) for WHOOP and 65% (κ = 0.52) for Somfit. Analyses regarding the two-state categorisation of sleep indicate that all six devices are valid for the field-based assessment of the timing and duration of sleep. However, analyses regarding the multi-state categorisation of sleep indicate that all six devices require improvement for the assessment of specific sleep stages. As the use of wearable devices that are valid for the assessment of sleep increases in the general community, so too does the potential to answer research questions that were previously impractical or impossible to address-in some way, we could consider that the whole world is becoming a sleep laboratory.


Assuntos
Dispositivos Eletrônicos Vestíveis , Adulto , Frequência Cardíaca/fisiologia , Humanos , Polissonografia , Sono/fisiologia , Fases do Sono/fisiologia
4.
Sensors (Basel) ; 21(10)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065516

RESUMO

Heart rate (HR) and HR variability (HRV) infer readiness to perform exercise in athletic populations. Technological advancements have facilitated HR and HRV quantification via photoplethysmography (PPG). This study evaluated the validity of WHOOP's PPG-derived HR and HRV against electrocardiogram-derived (ECG) measures. HR and HRV were assessed via WHOOP and ECG over 15 opportunities. WHOOP-derived pulse-to-pulse (PP) intervals were edited with WHOOP's proprietary filter, in addition to various filter strengths via Kubios HRV software. HR and HRV (Ln RMSSD) were quantified for each filter strength. Agreement was assessed via bias and limits of agreement (LOA), and contextualised using smallest worthwhile change (SWC) and coefficient of variation (CV). Regardless of filter strength, bias (≤0.39 ± 0.38%) and LOA (≤1.56%) in HR were lower than the CV (10-11%) and SWC (5-5.5%) for this parameter. For Ln RMSSD, bias (1.66 ± 1.80%) and LOA (±5.93%) were lowest for a 200 ms filter and WHOOP's proprietary filter, which approached or exceeded the CV (3-13%) and SWC (1.5-6.5%) for this parameter. Acceptable agreement was found between WHOOP- and ECG-derived HR. Bias and LOA in Ln RMSSD approached or exceeded the SWC/CV for this variable and should be interpreted against its own level of bias precision.


Assuntos
Fotopletismografia , Punho , Eletrocardiografia , Frequência Cardíaca , Articulação do Punho
5.
J Sleep Res ; 29(3): e12903, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31621995

RESUMO

Sleep inertia is the transitional state marked by impaired cognitive performance and reduced vigilance upon waking. Exercising before bed may increase the amount of slow-wave sleep within the sleep period, which has previously been associated with increased sleep inertia. Healthy males (n = 12) spent 3 nights in a sleep laboratory (1-night washout period between each night) and completed one of the three conditions on each visit - no exercise, aerobic exercise (30 min cycling at 75% heart rate), and resistance exercise (six resistance exercises, three sets of 10 repetitions). The exercise conditions were completed 90 min prior to bed. Sleep was measured using polysomnography. Upon waking, participants completed five test batteries every 15 min, including the Karolinska Sleepiness Scale, a Psychomotor Vigilance Task, and the Spatial Configuration Task. Two separate linear mixed-effects models were used to assess: (a) the impact of condition; and (b) the amount of slow-wave sleep, on sleep inertia. There were no significant differences in sleep inertia between conditions, likely as a result of the similar sleep amount, sleep structure and time of awakening between conditions. The amount of slow-wave sleep impacted fastest 10% reciprocal reaction time on the Psychomotor Vigilance Task only, whereby more slow-wave sleep improved performance; however, the magnitude of this relationship was small. Results from this study suggest that exercise performed 90 min before bed does not negatively impact on sleep inertia. Future studies should investigate the impact of exercise intensity, duration and timing on sleep and subsequent sleep inertia.


Assuntos
Exercício Físico/fisiologia , Polissonografia/métodos , Desempenho Psicomotor/fisiologia , Privação do Sono/fisiopatologia , Sono/fisiologia , Adulto , Voluntários Saudáveis , Humanos , Masculino
6.
J Sports Sci ; 38(22): 2631-2636, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32713257

RESUMO

The aim of the study was to compare the WHOOP strap - a wearable device that estimates sleep based on measures of movement and heart rate derived from actigraphy and photoplethysmography, respectively. Twelve healthy adults (6 females, 6 males, aged 22.9 ± 3.4 years) participated in a 10-day, laboratory-based protocol. A total of 86 sleeps were independently assessed in 30-s epochs using polysomnography and WHOOP. For WHOOP, bed times were entered by researchers and sleeps were scored by the company based on proprietary algorithms. WHOOP overestimated total sleep time by 8.2 ± 32.9 minutes compared to polysomnography, but this difference was non-significant. WHOOP was compared to polysomnography for 2-stage (i.e., wake, sleep) and 4-stage categorisation (i.e., wake, light sleep [N1 or N2], slow-wave sleep [N3], REM) of sleep periods. For 2-stage categorisation, the agreement, sensitivity to sleep, specificity for wake, and Cohen's kappa were 89%, 95%, 51%, and 0.49, respectively. For 4-stage categorisation, the agreement, sensitivity to light sleep, SWS, REM, and wake, and Cohen's kappa were 64%, 62%, 68%, 70%, 51%, and 0.47, respectively. In situations where polysomnography is impractical (e.g., field settings), WHOOP is a reasonable method for estimating sleep, particularly for 2-stage categorisation, if accurate bedtimes are manually entered.


Assuntos
Actigrafia/instrumentação , Polissonografia/instrumentação , Sono/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , Feminino , Frequência Cardíaca , Humanos , Masculino , Movimento , Reprodutibilidade dos Testes , Fases do Sono/fisiologia , Adulto Jovem
7.
Nano Lett ; 17(5): 2959-2966, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28402674

RESUMO

For the promotion of lithium-oxygen batteries available for practical applications, the development of advanced cathode catalysts with low-cost, high activity, and stable structural properties is demanded. Such development is rooted on certain intelligent catalyst-electrode design that fundamentally facilitates electronic and ionic transport and improves oxygen diffusivity in a porous environment. Here we design a biphasic nitrogen-doped cobalt@graphene multiple-capsule heterostructure, combined with a flexible, stable porous electrode architecture, and apply it as promising cathodes for lithium-oxygen cells. The biphasic nitrogen-doping feature improves the electric conductivity and catalytic activity; the multiple-nanocapsule configuration makes high/uniform electroactive zones possible; furthermore, the colander-like porous electrode facilitates the oxygen diffusion, catalytic reaction, and stable deposition of discharge products. As a result, the electrode exhibits much improved electrocatalytic properties associated with unique morphologies of electrochemically grown lithium peroxides.

8.
Nano Lett ; 17(10): 6018-6026, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28771015

RESUMO

Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. In this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g-1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO4 (LFP) cathode materials (186 and 207 mA h g-1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also shows excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C-O-Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. This discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.

9.
Nano Lett ; 16(4): 2663-73, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27022761

RESUMO

In contrast to the stable cycle performance of space confined Se-based cathodes for lithium batteries in carbonate-based electrolytes, their common capacity fading in ether-based electrolytes has been paid less attention and not yet well-addressed so far. In this work, the lithiation/delithiation of amorphous Se2S5 confined in micro/mesoporous carbon (Se2S5/MPC) cathode was investigated by in situ X-ray near edge absorption spectroscopy (XANES) and theoretical calculations. The Se2S5/MPC composite was synthesized by a modified vaporization-condensation method to ensure a good encapsulation of Se2S5 into the pores of MPC host. In situ XANES results illustrated that the lithiation/delithiation reversibility of Se component was gradually decreased in ether-based electrolytes, leading to an aggravated formation of long-chain polyselenides during cycling and further capacity decay. Moreover, ab initio calculations revealed that the binding energy of polyselenides (Li2Sen) with carbon host is in an order of Li2Se6 > Li2Se4 > Li2Se. The insights into the failure mechanism of Se-based cathode gain in this work are expected to serve as a guide for future design on high performance Se-based cathodes.

10.
J Am Chem Soc ; 138(4): 1158-61, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26771260

RESUMO

Controlled photoluminescence tuning is important for the optimization and modification of phosphor materials. Herein we report an isostructural solid solution of (CaMg)x(NaSc)1-xSi2O6 (0 < x < 1) in which cation nanosegregation leads to the presence of two dilute Eu(2+) centers. The distinct nanodomains of isostructural (CaMg)Si2O6 and (NaSc)Si2O6 contain a proportional number of Eu(2+) ions with unique, independent spectroscopic signatures. Density functional theory calculations provided a theoretical understanding of the nanosegregation and indicated that the homogeneous solid solution is energetically unstable. It is shown that nanosegregation allows predictive control of color rendering and therefore provides a new method of phosphor development.

11.
Nano Lett ; 15(4): 2711-5, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25723499

RESUMO

A growth mode was revealed by an in situ TEM study of nucleation and growth of Au on Pt icosahedral nanoparticles. Quantitative analysis of growth kinetics was carried out based on real-time TEM data, which shows the process involves: (1) deposition of Au on corner sites of Pt icosahedral nanoparticles, (2) diffusion of Au from corners to terraces and edges, and (3) subsequent layer-by-layer growth of Au on Au surfaces to form Pt@Au core-shell nanoparticles. The in situ TEM results indicate diffusion of Au from corner islands to terraces and edges is a kinetically controlled growth, as evidenced by a measurement of diffusion coefficients for these growth processes. We demonstrated that in situ electron microscopy is a valuable tool for quantitative study of nucleation and growth kinetics and can provide new insight into the design and precise control of heterogeneous nanostructures.


Assuntos
Cristalização/métodos , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Platina/química , Teste de Materiais/métodos , Impressão Molecular/métodos , Doses de Radiação
12.
Nano Lett ; 15(2): 1041-6, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25615912

RESUMO

During the cycling of Li-O2 batteries the discharge process gives rise to dynamically evolving agglomerates composed of lithium-oxygen nanostructures; however, little is known about their composition. In this paper, we present results for a Li-O2 battery based on an activated carbon cathode that indicate interfacial effects can suppress disproportionation of a LiO2 component in the discharge product. High-intensity X-ray diffraction and transmission electron microscopy measurements are first used to show that there is a LiO2 component along with Li2O2 in the discharge product. The stability of the discharge product was then probed by investigating the dependence of the charge potential and Raman intensity of the superoxide peak with time. The results indicate that the LiO2 component can be stable for possibly up to days when an electrolyte is left on the surface of the discharged cathode. Density functional calculations on amorphous LiO2 reveal that the disproportionation process will be slower at an electrolyte/LiO2 interface compared to a vacuum/LiO2 interface. The combined experimental and theoretical results provide new insight into how interfacial effects can stabilize LiO2 and suggest that these interfacial effects may play an important role in the charge and discharge chemistries of a Li-O2 battery.

13.
Nano Lett ; 14(8): 4406-12, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24960635

RESUMO

One challenge existing since the invention of electron-beam lithography (EBL) is understanding the exposure mechanisms that limit the resolution of EBL. To overcome this challenge, we need to understand the spatial distribution of energy density deposited in the resist, that is, the point-spread function (PSF). During EBL exposure, the processes of electron scattering, phonon, photon, plasmon, and electron emission in the resist are combined, which complicates the analysis of the EBL PSF. Here, we show the measurement of delocalized energy transfer in EBL exposure by using chromatic aberration-corrected energy-filtered transmission electron microscopy (EFTEM) at the sub-10 nm scale. We have defined the role of spot size, electron scattering, secondary electrons, and volume plasmons in the lithographic PSF by performing EFTEM, momentum-resolved electron energy loss spectroscopy (EELS), sub-10 nm EBL, and Monte Carlo simulations. We expect that these results will enable alternative ways to improve the resolution limit of EBL. Furthermore, our approach to study the resolution limits of EBL may be applied to other lithographic techniques where electrons also play a key role in resist exposure, such as ion-beam-, X-ray-, and extreme-ultraviolet lithography.

14.
Nano Lett ; 14(6): 3617-22, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24801618

RESUMO

We use in situ transmission electron microscopy to directly observe, at high temporal and spatial resolution, the interaction of ferroelectric domains and dislocation networks within BiFeO3 thin films. The experimental observations are compared with a phase field model constructed to simulate the dynamics of domains in the presence of dislocations and their resulting strain fields. We demonstrate that a global network of misfit dislocations at the film-substrate interface can act as nucleation sites and slow down domain propagation in the vicinity of the dislocations. Networks of individual threading dislocations emanating from the film-electrode interface play a more dramatic role in pinning domain motion. These dislocations may be responsible for the domain behavior in ferroelectric thin-film devices deviating from conventional Kolmogorov-Avrami-Ishibashi dynamics toward a Nucleation Limited Switching model.

15.
Microsc Microanal ; 20(5): 1507-13, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24950215

RESUMO

Traditional electron microscopy techniques such as bright-field imaging provide poor contrast for organic films and identification of structures in amorphous material can be problematic, particularly in high-performance organic solar cells. By combining energy-filtered corrected transmission electron microscopy, together with electron energy loss and X-ray energy-dispersive hyperspectral imaging, we have imaged PTB7/PC61BM blended polymer optical photovoltaic films, and were able to identify domains ranging in size from several hundred nanometers to several nanometers in extent. This work verifies that microstructural domains exist in bulk heterojunctions in PTB7/PC61BM polymeric solar cells at multiple length scales and expands our understanding of optimal device performance providing insight for the design of even higher performance cells.

16.
Nano Lett ; 13(9): 4182-9, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23927754

RESUMO

In this study, atomic layer deposition (ALD) was used to deposit nanostructured palladium on porous carbon as the cathode material for Li-O2 cells. Scanning transmission electron microscopy showed discrete crystalline nanoparticles decorating the surface of the porous carbon support, where the size could be controlled in the range of 2-8 nm and depended on the number of Pd ALD cycles performed. X-ray absorption spectroscopy at the Pd K-edge revealed that the carbon supported Pd existed in a mixed phase of metallic palladium and palladium oxide. The conformality of ALD allowed us to uniformly disperse the Pd catalyst onto the carbon support while preserving the initial porous structure. As a result, the charging and discharging performance of the oxygen cathode in a Li-O2 cell was improved. Our results suggest that ALD is a promising technique for tailoring the surface composition and structure of nanoporous supports in energy storage devices.


Assuntos
Fontes de Energia Elétrica , Nanopartículas/química , Paládio/química , Catálise , Lítio/química , Nanoestruturas/química , Oxigênio/química , Porosidade , Propriedades de Superfície
17.
Sports Med Open ; 10(1): 39, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625486

RESUMO

BACKGROUND: Sleep is a critical component of recovery, but it can be disrupted following prolonged endurance exercise. The objective of this study was to examine the capacity of male and female professional cyclists to recover between daily race stages while competing in the 2022 Tour de France and the 2022 Tour de France Femmes, respectively. The 17 participating cyclists (8 males from a single team and 9 females from two teams) wore a fitness tracker (WHOOP 4.0) to capture recovery metrics related to night-time sleep and autonomic activity for the entirety of the events and for 7 days of baseline before the events. The primary analyses tested for a main effect of 'stage classification'-i.e., rest, flat, hilly, mountain or time trial for males and flat, hilly or mountain for females-on the various recovery metrics. RESULTS: During baseline, total sleep time was 7.2 ± 0.3 h for male cyclists (mean ± 95% confidence interval) and 7.7 ± 0.3 h for female cyclists, sleep efficiency was 87.0 ± 4.4% for males and 88.8 ± 2.6% for females, resting HR was 41.8 ± 4.5 beats·min-1 for males and 45.8 ± 4.9 beats·min-1 for females, and heart rate variability during sleep was 108.5 ± 17.0 ms for males and 119.8 ± 26.4 ms for females. During their respective events, total sleep time was 7.2 ± 0.1 h for males and 7.5 ± 0.3 h for females, sleep efficiency was 86.4 ± 1.2% for males and 89.6 ± 1.2% for females, resting HR was 44.5 ± 1.2 beats·min-1 for males and 50.2 ± 2.0 beats·min-1 for females, and heart rate variability during sleep was 99.1 ± 4.2 ms for males and 114.3 ± 11.2 ms for females. For male cyclists, there was a main effect of 'stage classification' on recovery, such that heart rate variability during sleep was lowest after mountain stages. For female cyclists, there was a main effect of 'stage classification' on recovery, such that the percentage of light sleep (i.e., lower-quality sleep) was highest after mountain stages. CONCLUSIONS: Some aspects of recovery were compromised after the most demanding days of racing, i.e., mountain stages. Overall however, the cyclists obtained a reasonable amount of good-quality sleep while competing in these physiologically demanding endurance events. This study demonstrates that it is now feasible to assess recovery in professional athletes during multiple-day endurance events using validated fitness trackers.

18.
J Am Chem Soc ; 135(37): 13947-53, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23968372

RESUMO

Pressure-induced amorphization (PIA) in single-crystal Ta2O5 nanowires is observed at 19 GPa, and the obtained amorphous Ta2O5 nanowires show significant improvement in electrical conductivity. The phase transition process is unveiled by monitoring structural evolution with in situ synchrotron X-ray diffraction, pair distribution function, Raman spectroscopy, and transmission electron microscopy. The first principles calculations reveal the phonon modes softening during compression at particular bonds, and the analysis on the electron localization function also shows bond strength weakening at the same positions. On the basis of the experimental and theoretical results, a kinetic PIA mechanism is proposed and demonstrated systematically that amorphization is initiated by the disruption of connectivity between polyhedra (TaO6 octahedra or TaO7 bipyramids) at the particular weak-bonding positions along the a axis in the unit cell. The one-dimensional morphology is well-preserved for the pressure-induced amorphous Ta2O5, and the electrical conductivity is improved by an order of magnitude compared to traditional amorphous forms. Such pressure-induced amorphous nanomaterials with unique properties surpassing those in either crystalline or conventional amorphous phases hold great promise for numerous applications in the future.

19.
Front Physiol ; 14: 1231835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576342

RESUMO

Introduction: Recent sleep guidelines regarding evening exercise have shifted from a conservative (i.e., do not exercise in the evening) to a more nuanced approach (i.e., exercise may not be detrimental to sleep in circumstances). With the increasing popularity of wearable technology, information regarding exercise and sleep are readily available to the general public. There is potential for these data to aid sleep recommendations within and across different population cohorts. Therefore, the aim of this study was to examine if sleep, exercise, and individual characteristics can be used to predict whether evening exercise will compromise sleep. Methods: Data regarding evening exercise and the subsequent night's sleep were obtained from 5,250 participants (1,321F, 3,929M, aged 30.1 ± 5.2 yrs) using a wearable device (WHOOP 3.0). Data for females and males were analysed separately. The female and male datasets were both randomly split into subsets of training and testing data (training:testing = 75:25). Algorithms were trained to identify compromised sleep (i.e., sleep efficiency <90%) for females and males based on factors including the intensity, duration and timing of evening exercise. Results: When subsequently evaluated using the independent testing datasets, the algorithms had sensitivity for compromised sleep of 87% for females and 90% for males, specificity of 29% for females and 20% for males, positive predictive value of 32% for females and 36% for males, and negative predictive value of 85% for females and 79% for males. If these results generalise, applying the current algorithms would allow females to exercise on ~ 25% of evenings with ~ 15% of those sleeps being compromised and allow males to exercise on ~ 17% of evenings with ~ 21% of those sleeps being compromised. Discussion: The main finding of this study was that the models were able to predict a high percentage of nights with compromised sleep based on individual characteristics, exercise characteristics and habitual sleep characteristics. If the benefits of exercising in the evening outweigh the costs of compromising sleep on some of the nights when exercise is undertaken, then the application of the current algorithms could be considered a viable alternative to generalised sleep hygiene guidelines.

20.
J Am Chem Soc ; 134(33): 13616-23, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22831172

RESUMO

Three new tailor-made molecules (DPDCTB, DPDCPB, and DTDCPB) were strategically designed and convergently synthesized as donor materials for small-molecule organic solar cells. These compounds possess a donor-acceptor-acceptor molecular architecture, in which various electron-donating moieties are connected to an electron-withdrawing dicyanovinylene moiety through another electron-accepting 2,1,3-benzothiadiazole block. The molecular structures and crystal packings of DTDCPB and the previously reported DTDCTB were characterized by single-crystal X-ray crystallography. Photophysical and electrochemical properties as well as energy levels of this series of donor molecules were thoroughly investigated, affording clear structure-property relationships. By delicate manipulation of the trade-off between the photovoltage and the photocurrent via molecular structure engineering together with device optimizations, which included fine-tuning the layer thicknesses and the donor:acceptor blended ratio in the bulk heterojunction layer, vacuum-deposited hybrid planar-mixed heterojunction devices utilizing DTDCPB as the donor and C(70) as the acceptor showed the best performance with a power conversion efficiency (PCE) of 6.6 ± 0.2% (the highest PCE of 6.8%), along with an open-circuit voltage (V(oc)) of 0.93 ± 0.02 V, a short-circuit current density (J(sc)) of 13.48 ± 0.27 mA/cm(2), and a fill factor (FF) of 0.53 ± 0.02, under 1 sun (100 mW/cm(2)) AM 1.5G simulated solar illumination.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa