Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 26(6): 1608-1630, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28026894

RESUMO

The functions and compositions of symbiotic bacterial communities often correlate with host ecology. Yet cause-effect relationships and the order of symbiont vs. host change remain unclear in the face of ancient symbioses and conserved host ecology. Several groups of ants exemplify this challenge, as their low-nitrogen diets and specialized symbioses appear conserved and ancient. To address whether nitrogen-provisioning symbionts might be important in the early stages of ant trophic shifts, we studied bacteria from the Argentine ant, Linepithema humile - an invasive species that has transitioned towards greater consumption of sugar-rich, nitrogen-poor foods in parts of its introduced range. Bacteria were present at low densities in most L. humile workers, and among those yielding quality 16S rRNA amplicon sequencing data, we found just three symbionts to be common and dominant. Two, a Lactobacillus and an Acetobacteraceae species, were shared between native and introduced populations. The other, a Rickettsia, was found only in two introduced supercolonies. Across an eight-year period of trophic reduction in one introduced population, we found no change in symbionts, arguing against a relationship between natural dietary change and microbiome composition. Overall, our findings thus argue against major changes in symbiotic bacteria in association with the invasion and trophic shift of L. humile. In addition, genome content from close relatives of the identified symbionts suggests that just one can synthesize most essential amino acids; this bacterium was only modestly abundant in introduced populations, providing little support for a major role of nitrogen-provisioning symbioses in Argentine ant's dietary shift.


Assuntos
Formigas/microbiologia , Bactérias/classificação , Dieta , Simbiose , Animais , Formigas/fisiologia , Argentina , Comportamento Alimentar , Espécies Introduzidas , RNA Ribossômico 16S/genética
2.
Biochim Biophys Acta Mol Cell Res ; 1867(9): 118734, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32389645

RESUMO

A human cDNA encoding the LIM domain containing 194 amino acid cysteine and glycine rich protein 3 (CSRP3) was identified as a BAX suppressor in yeast and a pro-survival sequence that abrogated copper mediated regulated cell death (RCD). Yeast lacks a CSRP3 orthologue but it has four LIM sequences, namely RGA1, RGA2, LRG1 and PXL1. These are known regulators of stress responses yet their roles in RCD remain unknown. Given that LIMs interact with other LIMs, we ruled out the possibility that overexpressed yeast LIMs alone could prevent RCD and that CSRP3 functions by acting as a dominant regulator of yeast LIMs. Of interest was the discovery that even though yeast cells lacking the LIM encoding PXL1 had no overt growth defect, it was nevertheless supersensitive to the effects of sublethal levels of copper. Heterologous expression of human CSPR3 as well as the pro-survival 14-3-3 sequence corrected this copper supersensitivity. These results show that the pxl1∆-copper synthetic lethality is likely due to the induction of RCD. This differs from the prevailing model in which synthetic lethality occurs because of specific defects generated by the combined loss of two overlapping but non-essential functions.


Assuntos
Sobrevivência Celular/genética , Mutações Sintéticas Letais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Autofagia , Humanos , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Modelos Biológicos , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína X Associada a bcl-2/metabolismo
3.
Biochim Biophys Acta Mol Cell Res ; 1866(4): 699-712, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30529230

RESUMO

The prevailing models of stress induced Programmed Cell Death (PCD) posit that excess extracellular chemicals interact with or enter cells and disrupts cellular homeostasis. This activates signalling cascades involving the mitochondria, an increase in the steady state levels of Reactive Oxygen Species (ROS) as well as the activation of Bax and caspases. Further, the increased ROS also causes cellular damage that triggers or enhances PCD responses. The models have been modified in a number of ways, for example to include the existence of caspase and Bax independent forms of PCD. More recently, the ubiquity of ROS has also been challenged in part based on the failure of anti-oxidants to protect from diseases with increased intensity of oxidative stress. Here we focus on a number of other, often overlooked, observations regarding stress mediated responses that may further increase our mechanistic understanding of PCD. These include the concept of the "milieu intérieur" which suggests that cells actively protect themselves (adaptive homeostasis) in part by limiting entry to most extracellular chemicals. Of similar importance, stress also increases the levels of other stress inducible second messengers including ceramide, iron and calcium. This review focuses on the concept that stress is an agonist that conveys information that is transduced into the cell to activate the appropriate genetically encoded cell death and survival responses.


Assuntos
Apoptose , Estresse Fisiológico , Sobrevivência Celular/genética , Homeostase , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Biochim Biophys Acta Mol Cell Res ; 1866(5): 773-792, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30716408

RESUMO

Alterations in the levels of numerous second messengers are ubiquitous responses to all stresses that lead to apoptotic or hormetic responses. The sheer number and vast diversity of different second messenger systems activated in response to stresses belies a complexity that is often overlooked. This negligence is in large part due to the excessive focus on classical stress responsive second messenger mediators of stress especially Reactive Oxygen Species (ROS) but also others like calcium and ceramide. Here we review the many different intracellular second messengers that are involved in stress responses. We further integrate this information to emphasize that initial stress mediated responses consist of increased levels of a multitude of intracellular second messengers that serve to elicit the appropriate cell survival and/or cell death responses. We suggest that a greater focus on second messenger systems may shed more light on the processes that serve in the initiation of stress mediated PCD.


Assuntos
Apoptose/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos
5.
Sci Rep ; 6: 21489, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887656

RESUMO

Cryptococcus neoformans is a significant fungal pathogen of immunocompromised patients. Many questions remain regarding the function of macrophages in normal clearance of cryptococcal infection and the defects present in uncontrolled cryptococcosis. Two current limitations are: 1) The difficulties in interpreting studies using isolated macrophages in the context of the progression of infection, and 2) The use of high resolution imaging in understanding immune cell behavior during animal infection. Here we describe a high-content imaging method in a zebrafish model of cryptococcosis that permits the detailed analysis of macrophage interactions with C. neoformans during infection. Using this approach we demonstrate that, while macrophages are critical for control of C. neoformans, a failure of macrophage response is not the limiting defect in fatal infections. We find phagocytosis is restrained very early in infection and that increases in cryptococcal number are driven by intracellular proliferation. We show that macrophages preferentially phagocytose cryptococci with smaller polysaccharide capsules and that capsule size is greatly increased over twenty-four hours of infection, a change that is sufficient to severely limit further phagocytosis. Thus, high-content imaging of cryptococcal infection in vivo demonstrates how very early interactions between macrophages and cryptococci are critical in the outcome of cryptococcosis.


Assuntos
Proliferação de Células , Criptococose/metabolismo , Cryptococcus neoformans/metabolismo , Doenças dos Peixes/metabolismo , Macrófagos/metabolismo , Peixe-Zebra/metabolismo , Animais , Criptococose/patologia , Doenças dos Peixes/microbiologia , Macrófagos/microbiologia , Organismos Geneticamente Modificados/metabolismo , Peixe-Zebra/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa