Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
J Biol Chem ; : 107369, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750792

RESUMO

Phytochromes (Phys) are a diverse collection of photoreceptors that regulate numerous physiological and developmental processes in microorganisms and plants through photointerconversion between red-light absorbing Pr and far-red light-absorbing Pfr states. Light is detected by an N-terminal photosensing module (PSM) sequentially comprised of Period/ARNT/Sim (PAS), cGMP-phosphodiesterase/adenylyl cyclase/FhlA (GAF), and Phy-specific (PHY) domains, with the bilin chromophore covalently-bound within the GAF domain. Phys sense light via the Pr/Pfr ratio measured by light-induced rotation of the bilin D-pyrrole ring that triggers conformational changes within the PSM, which for microbial Phys reaches into an output region. A key step is a ß-stranded to α-helical reconfiguration of a hairpin loop extending from the PHY domain to contact the GAF domain. Besides canonical Phys, cyanobacteria express several variants, including a PAS-less subfamily that harbors just the GAF and PHY domains for light detection. Prior 2D-NMR studies of a model PAS-less Phy from Synechococcus_sp._JA-2-3B'a(2-13) (SyB-Cph1) proposed a unique photoconversion mechanism involving an A-pyrrole ring rotation, while magic-angle-spinning NMR probing the chromophore proposed the prototypic D-ring flip. To help solve this conundrum, we determined the crystallographic structure of the GAF-PHY region from SyB-Cph1 as Pr. Surprisingly, this structure differs from canonical Phys by having a Pr ZZZsyn,syn,anti bilin configuration but shifted to the activated position in the binding pocket with consequent folding of the hairpin loop to α-helical, an architecture common for Pfr. Collectively, the PSM of SyB-Cph1 as Pr displayed a mix of dark-adapted and photoactivated features whose co-planar A-C pyrrole rings supports a D-ring flip mechanism.

2.
J Nat Prod ; 87(4): 798-809, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412432

RESUMO

Structural and functional studies of the carminomycin 4-O-methyltransferase DnrK are described, with an emphasis on interrogating the acceptor substrate scope of DnrK. Specifically, the evaluation of 100 structurally and functionally diverse natural products and natural product mimetics revealed an array of pharmacophores as productive DnrK substrates. Representative newly identified DnrK substrates from this study included anthracyclines, angucyclines, anthraquinone-fused enediynes, flavonoids, pyranonaphthoquinones, and polyketides. The ligand-bound structure of DnrK bound to a non-native fluorescent hydroxycoumarin acceptor, 4-methylumbelliferone, along with corresponding DnrK kinetic parameters for 4-methylumbelliferone and native acceptor carminomycin are also reported for the first time. The demonstrated unique permissivity of DnrK highlights the potential for DnrK as a new tool in future biocatalytic and/or strain engineering applications. In addition, the comparative bioactivity assessment (cancer cell line cytotoxicity, 4E-BP1 phosphorylation, and axolotl embryo tail regeneration) of a select set of DnrK substrates/products highlights the ability of anthracycline 4-O-methylation to dictate diverse functional outcomes.


Assuntos
Metiltransferases , Metiltransferases/metabolismo , Metiltransferases/química , Estrutura Molecular , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Humanos , Antraciclinas/química , Antraciclinas/farmacologia , Especificidade por Substrato
3.
Proteins ; 91(12): 1571-1599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37493353

RESUMO

We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.


Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Modelos Moleculares , Biologia Computacional/métodos , Proteínas/química
4.
Proc Natl Acad Sci U S A ; 117(1): 300-307, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31852825

RESUMO

A major barrier to defining the structural intermediates that arise during the reversible photointerconversion of phytochromes between their biologically inactive and active states has been the lack of crystals that faithfully undergo this transition within the crystal lattice. Here, we describe a crystalline form of the cyclic GMP phosphodiesterases/adenylyl cyclase/FhlA (GAF) domain from the cyanobacteriochrome PixJ in Thermosynechococcus elongatus assembled with phycocyanobilin that permits reversible photoconversion between the blue light-absorbing Pb and green light-absorbing Pg states, as well as thermal reversion of Pg back to Pb. The X-ray crystallographic structure of Pb matches previous models, including autocatalytic conversion of phycocyanobilin to phycoviolobilin upon binding and its tandem thioether linkage to the GAF domain. Cryocrystallography at 150 K, which compared diffraction data from a single crystal as Pb or after irradiation with blue light, detected photoconversion product(s) based on Fobs - Fobs difference maps that were consistent with rotation of the bonds connecting pyrrole rings C and D. Further spectroscopic analyses showed that phycoviolobilin is susceptible to X-ray radiation damage, especially as Pg, during single-crystal X-ray diffraction analyses, which could complicate fine mapping of the various intermediate states. Fortunately, we found that PixJ crystals are amenable to serial femtosecond crystallography (SFX) analyses using X-ray free-electron lasers (XFELs). As proof of principle, we solved by room temperature SFX the GAF domain structure of Pb to 1.55-Å resolution, which was strongly congruent with synchrotron-based models. Analysis of these crystals by SFX should now enable structural characterization of the early events that drive phytochrome photoconversion.


Assuntos
Ficobilinas/metabolismo , Ficocianina/metabolismo , Fitocromo/química , Fitocromo/efeitos da radiação , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Cristalografia , Cristalografia por Raios X , Cianobactérias/química , GMP Cíclico , Luz , Modelos Moleculares , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Células Fotorreceptoras/metabolismo , Ficobilinas/química , Ficocianina/química , Conformação Proteica , Domínios Proteicos , Thermosynechococcus , Transativadores/química
5.
J Biol Chem ; 296: 100749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33961840

RESUMO

Proteins are the molecular machines of living systems. Their dynamics are an intrinsic part of their evolutionary selection in carrying out their biological functions. Although the dynamics are more difficult to observe than a static, average structure, we are beginning to observe these dynamics and form sound mechanistic connections between structure, dynamics, and function. This progress is highlighted in case studies from myoglobin and adenylate kinase to the ribosome and molecular motors where these molecules are being probed with a multitude of techniques across many timescales. New approaches to time-resolved crystallography are allowing simple "movies" to be taken of proteins in action, and new methods of mapping the variations in cryo-electron microscopy are emerging to reveal a more complete description of life's machines. The results of these new methods are aided in their dissemination by continual improvements in curation and distribution by the Protein Data Bank and their partners around the world.


Assuntos
Adenilato Quinase/química , Bases de Dados de Proteínas , Modelos Moleculares , Mioglobina/química , Ribossomos/química , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Animais , Humanos , Mioglobina/genética , Mioglobina/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Relação Estrutura-Atividade
6.
J Biol Chem ; 295(31): 10610-10623, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32434930

RESUMO

Marine cyanobacteria are infected by phages whose genomes encode ferredoxin (Fd) electron carriers. These Fds are thought to redirect the energy harvested from light to phage-encoded oxidoreductases that enhance viral fitness, but it is unclear how the biophysical properties and partner specificities of phage Fds relate to those of photosynthetic organisms. Here, results of a bioinformatics analysis using a sequence similarity network revealed that phage Fds are most closely related to cyanobacterial Fds that transfer electrons from photosystems to oxidoreductases involved in nutrient assimilation. Structural analysis of myovirus P-SSM2 Fd (pssm2-Fd), which infects the cyanobacterium Prochlorococcus marinus, revealed high levels of similarity to cyanobacterial Fds (root mean square deviations of ≤0.5 Å). Additionally, pssm2-Fd exhibited a low midpoint reduction potential (-336 mV versus a standard hydrogen electrode), similar to other photosynthetic Fds, although it had lower thermostability (Tm = 28 °C) than did many other Fds. When expressed in an Escherichia coli strain deficient in sulfite assimilation, pssm2-Fd complemented bacterial growth when coexpressed with a P. marinus sulfite reductase, revealing that pssm2-Fd can transfer electrons to a host protein involved in nutrient assimilation. The high levels of structural similarity with cyanobacterial Fds and reactivity with a host sulfite reductase suggest that phage Fds evolved to transfer electrons to cyanobacterially encoded oxidoreductases.


Assuntos
Proteínas de Bactérias , Bacteriófagos/enzimologia , Ferredoxinas , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Prochlorococcus , Proteínas Virais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ferredoxinas/química , Ferredoxinas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Prochlorococcus/enzimologia , Prochlorococcus/virologia , Proteínas Virais/química , Proteínas Virais/metabolismo
7.
Proteins ; 89(1): 132-137, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32852843

RESUMO

Natural products and natural product-derived compounds have been widely used for pharmaceuticals for many years, and the search for new natural products that may have interesting activity is ongoing. Abyssomicins are natural product molecules that have antibiotic activity via inhibition of the folate synthesis pathway in microbiota. These compounds also appear to undergo a required [4 + 2] cycloaddition in their biosynthetic pathway. Here we report the structure of an flavin adenine dinucleotide-dependent reductase, AbsH3, from the biosynthetic gene cluster of novel abyssomicins found in Streptomyces sp. LC-6-2.


Assuntos
Produtos Biológicos , Streptomyces , Produtos Biológicos/metabolismo , Vias Biossintéticas , Flavina-Adenina Dinucleotídeo/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Streptomyces/genética
8.
Nat Methods ; 14(4): 443-449, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250468

RESUMO

X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.


Assuntos
Cristalografia por Raios X/métodos , Lasers , Acústica , Complexo de Proteína do Fotossistema II/química , Fitocromo/química , Ribonucleotídeo Redutases/química , Espectrometria por Raios X/métodos
9.
Biomacromolecules ; 21(9): 3772-3781, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32820897

RESUMO

Collagen mimetic peptides (CMPs) self-assemble into a triple helix reproducing the most fundamental aspect of the collagen structural hierarchy. They are therefore important for both further understanding this complex family of proteins and use in a wide range of biomaterials and biomedical applications. CMP self-assembly is complicated by a number of factors which limit the use of CMPs including their slow rate of folding, relatively poor monomer-trimer equilibrium, and the large number of competing species possible in heterotrimeric helices. All of these problems can be solved through the formation of isopeptide bonds between lysine and either aspartate or glutamate. These amino acids serve two purposes: they first direct self-assemble, allowing for composition and register control within the triple helix, and subsequently can be covalently linked, fixing the composition and register of the assembled structure without perturbing the triple helical conformation. This self-assembly and covalent capture are demonstrated here with four different triple helices. The formation of an isopeptide bond between lysine and glutamate (K-E) is shown to be a faster and higher yielding reaction than lysine with aspartate (K-D). Additionally, K-E amide bonds increase the thermal stability, improve the refolding capabilities, and enhance the triple helical structure as compared to K-E supramolecular interactions, observed by circular dichroism. In contrast, covalent capture of triple helices with K-D amide bonds occurs slower, and the captured triple helices do not have enhanced helical structure. The crystal structure of a triple helix captured through the formation of three K-E isopeptide bonds unequivocally demonstrates the connectivity of the amide bonds formed while also confirming the preservation of the canonical triple helix. The rate of reaction and yield for covalently captured K-E triple helices along with the excellent preservation of triple helical structure demonstrate that this approach can be used to effectively capture and stabilize this important biological motif for biological and biomedical applications.


Assuntos
Ácido Aspártico , Lisina , Colágeno , Glutamatos , Estrutura Secundária de Proteína
10.
BMC Biol ; 16(1): 59, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29848358

RESUMO

BACKGROUND: Ever since the first atomic structure of an enzyme was solved, the discovery of the mechanism and dynamics of reactions catalyzed by biomolecules has been the key goal for the understanding of the molecular processes that drive life on earth. Despite a large number of successful methods for trapping reaction intermediates, the direct observation of an ongoing reaction has been possible only in rare and exceptional cases. RESULTS: Here, we demonstrate a general method for capturing enzyme catalysis "in action" by mix-and-inject serial crystallography (MISC). Specifically, we follow the catalytic reaction of the Mycobacterium tuberculosis ß-lactamase with the third-generation antibiotic ceftriaxone by time-resolved serial femtosecond crystallography. The results reveal, in near atomic detail, antibiotic cleavage and inactivation from 30 ms to 2 s. CONCLUSIONS: MISC is a versatile and generally applicable method to investigate reactions of biological macromolecules, some of which are of immense biological significance and might be, in addition, important targets for structure-based drug design. With megahertz X-ray pulse rates expected at the Linac Coherent Light Source II and the European X-ray free-electron laser, multiple, finely spaced time delays can be collected rapidly, allowing a comprehensive description of biomolecular reactions in terms of structure and kinetics from the same set of X-ray data.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Ceftriaxona/química , Cristalografia por Raios X/métodos , Mycobacterium tuberculosis/enzimologia , beta-Lactamases/química , Proteínas de Bactérias/genética , Biocatálise , Resistência às Cefalosporinas/genética , Cinética , Lasers , Modelos Moleculares , Fatores de Tempo , beta-Lactamases/genética
11.
Proc Natl Acad Sci U S A ; 112(15): 4666-71, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825768

RESUMO

NANOG (from Irish mythology Tír na nÓg) transcription factor plays a central role in maintaining pluripotency, cooperating with OCT4 (also known as POU5F1 or OCT3/4), SOX2, and other pluripotency factors. Although the physiological roles of the NANOG protein have been extensively explored, biochemical and biophysical properties in relation to its structural analysis are poorly understood. Here we determined the crystal structure of the human NANOG homeodomain (hNANOG HD) bound to an OCT4 promoter DNA, which revealed amino acid residues involved in DNA recognition that are likely to be functionally important. We generated a series of hNANOG HD alanine substitution mutants based on the protein-DNA interaction and evolutionary conservation and determined their biological activities. Some mutant proteins were less stable, resulting in loss or decreased affinity for DNA binding. Overexpression of the orthologous mouse NANOG (mNANOG) mutants failed to maintain self-renewal of mouse embryonic stem cells without leukemia inhibitory factor. These results suggest that these residues are critical for NANOG transcriptional activity. Interestingly, one mutant, hNANOG L122A, conversely enhanced protein stability and DNA-binding affinity. The mNANOG L122A, when overexpressed in mouse embryonic stem cells, maintained their expression of self-renewal markers even when retinoic acid was added to forcibly drive differentiation. When overexpressed in epiblast stem cells or human induced pluripotent stem cells, the L122A mutants enhanced reprogramming into ground-state pluripotency. These findings demonstrate that structural and biophysical information on key transcriptional factors provides insights into the manipulation of stem cell behaviors and a framework for rational protein engineering.


Assuntos
Proliferação de Células/genética , Reprogramação Celular/genética , Proteínas de Homeodomínio/genética , Mutação , Células-Tronco Pluripotentes/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Células Cultivadas , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Proteína Homeobox Nanog , Conformação de Ácido Nucleico , Células-Tronco Pluripotentes/citologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transfecção
12.
Proteins ; 84(3): 316-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26650892

RESUMO

Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α-hydroxyl group. The rate-determining enzyme in this pathway is bile acid 7α-dehydratase (baiE). In this study, crystal structures of apo-BaiE and its putative product-bound [3-oxo-Δ(4,6) -lithocholyl-Coenzyme A (CoA)] complex are reported. BaiE is a trimer with a twisted α + ß barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35, and His83 form a catalytic triad that is conserved across this family. Site-directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirm that these residues are essential for catalysis and also the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady-state kinetic studies reveal that the BaiE homologs are able to turn over 3-oxo-Δ(4) -bile acid and CoA-conjugated 3-oxo-Δ(4) -bile acid substrates with comparable efficiency questioning the role of CoA-conjugation in the bile acid metabolism pathway.


Assuntos
Proteínas de Bactérias/química , Ácidos Cólicos/química , Clostridium/enzimologia , Hidroliases/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Ácidos Cólicos/biossíntese , Cristalografia por Raios X , Humanos , Hidroliases/genética , Ligação de Hidrogênio , Hidroxilação , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
13.
J Biol Chem ; 288(23): 16789-16799, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23572527

RESUMO

DUF2233, a domain of unknown function (DUF), is present in many bacterial and several viral proteins and was also identified in the mammalian transmembrane glycoprotein N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase ("uncovering enzyme" (UCE)). We report the crystal structure of BACOVA_00430, a 315-residue protein from the human gut bacterium Bacteroides ovatus that is the first structural representative of the DUF2233 protein family. A notable feature of this structure is the presence of a surface cavity that is populated by residues that are highly conserved across the entire family. The crystal structure was used to model the luminal portion of human UCE (hUCE), which is involved in targeting of lysosomal enzymes. Mutational analysis of several residues in a highly conserved surface cavity of hUCE revealed that they are essential for function. The bacterial enzyme (BACOVA_00430) has ∼1% of the catalytic activity of hUCE toward the substrate GlcNAc-P-mannose, the precursor of the Man-6-P lysosomal targeting signal. GlcNAc-1-P is a poor substrate for both enzymes. We conclude that, for at least a subset of proteins in this family, DUF2233 functions as a phosphodiester glycosidase.


Assuntos
Proteínas de Bactérias/química , Bacteroides/enzimologia , Diester Fosfórico Hidrolases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Mutagênese , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Homologia Estrutural de Proteína
14.
Proteins ; 82(1): 164-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23852666

RESUMO

PF10014 is a novel family of 2-oxyglutarate-Fe(2+) -dependent dioxygenases that are involved in biosynthesis of antibiotics and regulation of biofilm formation, likely by catalyzing hydroxylation of free amino acids or other related ligands. The crystal structure of a PF10014 member from Methylibium petroleiphilum at 1.9 Å resolution shows strong structural similarity to cupin dioxygenases in overall fold and active site, despite very remote homology. However, one of the ß-strands of the cupin catalytic core is replaced by a loop that displays conformational isomerism that likely regulates the active site.


Assuntos
Domínio Catalítico/genética , Comamonadaceae/enzimologia , Sequência Conservada/genética , Dioxigenases/química , Modelos Moleculares , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Cristalização , Primers do DNA/genética , Dioxigenases/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
15.
Proteins ; 82(6): 1086-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24174223

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen commonly found in humans and other organisms and is an important cause of infection especially in patients with compromised immune defense mechanisms. The PA3611 gene of P. aeruginosa PAO1 encodes a secreted protein of unknown function, which has been recently classified into a small Pseudomonas-specific protein family called DUF4146. As part of our effort to extend structural coverage of novel protein space and provide a structure-based functional insight into new protein families, we report the crystal structure of PA3611, the first structural representative of the DUF4146 protein family.


Assuntos
Proteínas de Bactérias/química , Pseudomonas aeruginosa , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Estrutura Secundária de Proteína , Percepção de Quorum
16.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1104-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699654

RESUMO

Many macromolecular model-building and refinement programs can automatically place solvent atoms in electron density at moderate-to-high resolution. This process frequently builds water molecules in place of elemental ions, the identification of which must be performed manually. The solvent-picking algorithms in phenix.refine have been extended to build common ions based on an analysis of the chemical environment as well as physical properties such as occupancy, B factor and anomalous scattering. The method is most effective for heavier elements such as calcium and zinc, for which a majority of sites can be placed with few false positives in a diverse test set of structures. At atomic resolution, it is observed that it can also be possible to identify tightly bound sodium and magnesium ions. A number of challenges that contribute to the difficulty of completely automating the process of structure completion are discussed.


Assuntos
Automação Laboratorial/métodos , Cristalografia por Raios X/métodos , Íons/química , Modelos Moleculares , Estrutura Terciária de Proteína , Termolisina/química , Trombina/química
17.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2640-51, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286848

RESUMO

The crystal structure of arabinose-5-phosphate isomerase (API) from Bacteroides fragilis (bfAPI) was determined at 1.7 Šresolution and was found to be a tetramer of a single-domain sugar isomerase (SIS) with an endogenous ligand, CMP-Kdo (cytidine 5'-monophosphate-3-deoxy-D-manno-oct-2-ulosonate), bound at the active site. API catalyzes the reversible isomerization of D-ribulose 5-phosphate to D-arabinose 5-phosphate in the first step of the Kdo biosynthetic pathway. Interestingly, the bound CMP-Kdo is neither the substrate nor the product of the reaction catalyzed by API, but corresponds to the end product in the Kdo biosynthetic pathway and presumably acts as a feedback inhibitor for bfAPI. The active site of each monomer is located in a surface cleft at the tetramer interface between three monomers and consists of His79 and His186 from two different adjacent monomers and a Ser/Thr-rich region, all of which are highly conserved across APIs. Structure and sequence analyses indicate that His79 and His186 may play important catalytic roles in the isomerization reaction. CMP-Kdo mimetics could therefore serve as potent and specific inhibitors of API and provide broad protection against many different bacterial infections.


Assuntos
Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Bacteroides fragilis/química , Aldose-Cetose Isomerases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Monofosfato de Citidina/análogos & derivados , Monofosfato de Citidina/química , Histidina/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Açúcares Ácidos/química
18.
J Bacteriol ; 195(24): 5555-66, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123814

RESUMO

Approximately 50% of cell wall peptidoglycan in Gram-negative bacteria is recycled with each generation. The primary substrates used for peptidoglycan biosynthesis and recycling in the cytoplasm are GlcNAc-MurNAc(anhydro)-tetrapeptide and its degradation product, the free tetrapeptide. This complex process involves ∼15 proteins, among which the cytoplasmic enzyme ld-carboxypeptidase A (LdcA) catabolizes the bond between the last two l- and d-amino acid residues in the tetrapeptide to form the tripeptide, which is then utilized as a substrate by murein peptide ligase (Mpl). LdcA has been proposed as an antibacterial target. The crystal structure of Novosphingobium aromaticivorans DSM 12444 LdcA (NaLdcA) was determined at 1.89-Šresolution. The enzyme was biochemically characterized and its interactions with the substrate modeled, identifying residues potentially involved in substrate binding. Unaccounted electron density at the dimer interface in the crystal suggested a potential site for disrupting protein-protein interactions should a dimer be required to perform its function in bacteria. Our analysis extends the identification of functional residues to several other homologs, which include enzymes from bacteria that are involved in hydrocarbon degradation and destruction of coral reefs. The NaLdcA crystal structure provides an alternate system for investigating the structure-function relationships of LdcA and increases the structural coverage of the protagonists in bacterial cell wall recycling.


Assuntos
Carboxipeptidases/química , Carboxipeptidases/metabolismo , Peptidoglicano/metabolismo , Sphingomonadaceae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Multimerização Proteica
19.
Mol Microbiol ; 83(4): 712-27, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22211578

RESUMO

The tad (tight adherence) locus encodes a protein translocation system that produces a novel variant of type IV pili. The pilus assembly protein TadZ (called CpaE in Caulobacter crescentus) is ubiquitous in tad loci, but is absent in other type IV pilus biogenesis systems. The crystal structure of TadZ from Eubacterium rectale (ErTadZ), in complex with ATP and Mg(2+) , was determined to 2.1 Å resolution. ErTadZ contains an atypical ATPase domain with a variant of a deviant Walker-A motif that retains ATP binding capacity while displaying only low intrinsic ATPase activity. The bound ATP plays an important role in dimerization of ErTadZ. The N-terminal atypical receiver domain resembles the canonical receiver domain of response regulators, but has a degenerate, stripped-down 'active site'. Homology modelling of the N-terminal atypical receiver domain of CpaE indicates that it has a conserved protein-protein binding surface similar to that of the polar localization module of the social mobility protein FrzS, suggesting a similar function. Our structural results also suggest that TadZ localizes to the pole through the atypical receiver domain during an early stage of pili biogenesis, and functions as a hub for recruiting other pili components, thus providing insights into the Tad pilus assembly process.


Assuntos
Proteínas de Bactérias/química , Eubacterium/genética , Proteínas de Membrana Transportadoras/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Fímbrias Bacterianas/metabolismo , Magnésio/química , Magnésio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
20.
IUCrJ ; 10(Pt 4): 487-496, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37409806

RESUMO

The general de novo solution of the crystallographic phase problem is difficult and only possible under certain conditions. This paper develops an initial pathway to a deep learning neural network approach for the phase problem in protein crystallography, based on a synthetic dataset of small fragments derived from a large well curated subset of solved structures in the Protein Data Bank (PDB). In particular, electron-density estimates of simple artificial systems are produced directly from corresponding Patterson maps using a convolutional neural network architecture as a proof of concept.


Assuntos
Aprendizado Profundo , Cristalografia , Proteínas/química , Redes Neurais de Computação , Bases de Dados de Proteínas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa