Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Pathol ; 239(3): 262-73, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27037906

RESUMO

Multiple myeloma (MM) is a chronic progressive malignancy of plasma cells. Although treatment with the novel proteasome inhibitor, bortezomib, significantly improves patient survival, some patients fail to respond due to the development of de novo resistance. We have previously shown that cytotoxic drugs can induce pro-tumorigenic host-mediated effects which contribute to tumour re-growth and metastasis, and thus limit anti-tumour efficacy. However, such effects and their impact on tumour cell aggressiveness have not been investigated using cytostatic agents such as bortezomib. Here we show that plasma from bortezomib-treated mice significantly increases migration, viability and proliferation of MM cells in vitro, compared to plasma from vehicle treated mice. In vivo, bortezomib induces the mobilization of pro-angiogenic bone marrow cells. Furthermore, mice treated with bortezomib and subsequently were used as recipients for an injection of MM cells succumb to MM earlier than mice treated with the vehicle. We show that bortezomib promotes pro-inflammatory macrophages which account for MM cell aggressiveness, an effect which is partially mediated by interleukin-16. Accordingly, co-inoculation of MM cells with pro-inflammatory macrophages from bortezomib-treated mice accelerates MM disease progression. Taken together, our results suggest that, in addition to the known effective anti-tumour activity of bortezomib, host-driven pro-tumorigenic effects generated in response to treatment can promote MM aggressiveness, and thus may contribute to the overall limited efficacy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/uso terapêutico , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteassoma/uso terapêutico , Indutores da Angiogênese , Animais , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Bortezomib/efeitos adversos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-16/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Mieloma Múltiplo/patologia , Plasmócitos/efeitos dos fármacos , Plasmócitos/patologia , Inibidores de Proteassoma/efeitos adversos
2.
Int J Cancer ; 135(2): 270-81, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24347266

RESUMO

Acute chemotherapy can induce rapid bone-marrow derived pro-angiogenic cell (BMDC) mobilization and tumor homing, contributing to tumor regrowth. To study the contribution of tumor cells to tumor regrowth following therapy, we focused on tumor-derived microparticles (TMPs). EMT/6 murine-mammary carcinoma cells exposed to paclitaxel chemotherapy exhibited an increased number of TMPs and significantly altered their angiogenic properties. Similarly, breast cancer patients had increased levels of plasma MUC-1(+) TMPs following chemotherapy. In addition, TMPs from cells exposed to paclitaxel induced higher BMDC mobilization and colonization, but had no increased effect on angiogenesis in Matrigel plugs and tumors than TMPs from untreated cells. Since TMPs abundantly express osteopontin, a protein known to participate in BMDC trafficking, the impact of osteopontin-depleted TMPs on BMDC mobilization, colonization, and tumor angiogenesis was examined. Although EMT/6 tumors grown in mice inoculated with osteopontin-depleted TMPs had lower numbers of BMDC infiltration and microvessel density when compared with EMT/6 tumors grown in mice inoculated with wild-type TMPs, no significant difference in tumor growth was seen between the two groups. However, when BMDCs from paclitaxel-treated mice were injected into wild-type EMT/6-bearing mice, a substantial increase in tumor growth and BMDC infiltration was detected compared to osteopontin-depleted EMT/6-bearing mice injected with BMDCs from paclitaxel-treated mice. Collectively, our results suggest that osteopontin expressed by TMPs play an important role in BMDC mobilization and colonization of tumors, but is not sufficient to enhance the angiogenic activity in tumors.


Assuntos
Células da Medula Óssea/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Neovascularização Patológica/metabolismo , Osteopontina/metabolismo , Animais , Antineoplásicos/farmacologia , Células da Medula Óssea/patologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/patologia , Paclitaxel/farmacologia
3.
Cancer Res ; 76(20): 5983-5993, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27569209

RESUMO

Conventional chemotherapy drugs administered at a maximum tolerated dose (MTD) remains the backbone for treating most cancers. Low-dose metronomic (LDM) chemotherapy, which utilizes lower, less toxic, doses given on a close regular basis over prolonged periods, is an alternative and better tolerated potential strategy to improve chemotherapy. LDM chemotherapy has been evaluated preclinically and clinically and has shown therapeutic benefit, in both early and advanced stage metastatic disease, especially when used as a maintenance therapy. However, knowledge about the antitumor mechanisms by which LDM chemotherapy acts remain limited. Here we characterized the effects of LDM and MTD capecitabine therapy on tumor and host cells using high-throughput systems approaches involving mass spectrometry flow cytometry and automated cell imaging followed by in vivo analyses of such therapies. An increase in myeloid and T regulatory cells and a decrease in NK and T cytotoxic cells were found in MTD-capecitabine-treated tumors compared with LDM-capecitbine-treated tumors. Plasma from MTD capecitabine-treated mice induced a more tumorigenic and metastatic profile in both breast and colon carcinoma cells than plasma from mice treated with LDM capecitabine. These results correlated, in part, with in vivo studies using models of human or mouse advanced metastatic disease, where the therapeutic advantage of MTD capecitabine was limited despite a substantial initial antitumor activity found in the primary tumor setting. Overall these results implicate a possible contribution of immunologic host effects in accounting for the therapeutic limitations of MTD compared with LDM capecitabine. Cancer Res; 76(20); 5983-93. ©2016 AACR.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Capecitabina/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Animais , Células da Medula Óssea/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Dose Máxima Tolerável , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/mortalidade , Neoplasias Experimentais/patologia
4.
Cell Rep ; 17(5): 1344-1356, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27783948

RESUMO

While chemotherapy strongly restricts or reverses tumor growth, the response of host tissue to therapy can counteract its anti-tumor activity by promoting tumor re-growth and/or metastases, thus limiting therapeutic efficacy. Here, we show that vascular endothelial growth factor receptor 3 (VEGFR3)-expressing macrophages infiltrating chemotherapy-treated tumors play a significant role in metastasis. They do so in part by inducing lymphangiogenesis as a result of cathepsin release, leading to VEGF-C upregulation by heparanase. We found that macrophages from chemotherapy-treated mice are sufficient to trigger lymphatic vessel activity and structure in naive tumors in a VEGFR3-dependent manner. Blocking VEGF-C/VEGFR3 axis inhibits the activity of chemotherapy-educated macrophages, leading to reduced lymphangiogenesis in treated tumors. Overall, our results suggest that disrupting the VEGF-C/VEGFR3 axis not only directly inhibits lymphangiogenesis but also blocks the pro-metastatic activity of macrophages in chemotherapy-treated mice.


Assuntos
Linfangiogênese , Macrófagos/patologia , Paclitaxel/farmacologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Catepsinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Glucuronidase/metabolismo , Humanos , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Fenótipo , Regulação para Cima/efeitos dos fármacos , Fator C de Crescimento do Endotélio Vascular/sangue , Fator C de Crescimento do Endotélio Vascular/metabolismo
5.
Mol Cancer Ther ; 14(6): 1385-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25887886

RESUMO

Acquired resistance to therapy is a major obstacle in clinical oncology, and little is known about the contributing mechanisms of the host response to therapy. Here, we show that the proinflammatory cytokine IL1ß is overexpressed in response to paclitaxel chemotherapy in macrophages, subsequently promoting the invasive properties of malignant cells. In accordance, blocking IL1ß, or its receptor, using either genetic or pharmacologic approach, results in slight retardation of primary tumor growth; however, it accelerates metastasis spread. Tumors from mice treated with combined therapy of paclitaxel and the IL1 receptor antagonist anakinra exhibit increased number of M2 macrophages and vessel leakiness when compared with paclitaxel monotherapy-treated mice, indicating a prometastatic role of M2 macrophages in the IL1ß-deprived microenvironment. Taken together, these findings demonstrate the dual effects of blocking the IL1 pathway on tumor growth. Accordingly, treatments using "add-on" drugs to conventional therapy should be investigated in appropriate tumor models consisting of primary tumors and their metastases.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Interleucina-1beta/genética , Neoplasias Experimentais/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/prevenção & controle , Paclitaxel/administração & dosagem , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Tumoral/efeitos dos fármacos
6.
Oncotarget ; 6(29): 27537-54, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26348470

RESUMO

A major therapeutic obstacle in clinical oncology is intrinsic or acquired resistance to therapy, leading to subsequent relapse. We have previously shown that systemic administration of different cytotoxic drugs can induce a host response that contributes to tumor angiogenesis, regrowth and metastasis. Here we characterize the host response to a single dose of local radiation, and its contribution to tumor progression and metastasis. We show that plasma from locally irradiated mice increases the migratory and invasive properties of colon carcinoma cells. Furthermore, locally irradiated mice intravenously injected with CT26 colon carcinoma cells succumb to pulmonary metastasis earlier than their respective controls. Consequently, orthotopically implanted SW480 human colon carcinoma cells in mice that underwent radiation, exhibited increased metastasis to the lungs and liver compared to their control tumors. The irradiated tumors exhibited an increase in the colonization of macrophages compared to their respective controls; and macrophage depletion in irradiated tumor-bearing mice reduces the number of metastatic lesions. Finally, the anti-tumor agent, dequalinium-14, in addition to its anti-tumor effect, reduces macrophage motility, inhibits macrophage infiltration of irradiated tumors and reduces the extent of metastasis in locally irradiated mice. Overall, this study demonstrates the adverse effects of local radiation on the host that result in macrophage-induced metastasis.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Dequalínio/análogos & derivados , Dequalínio/uso terapêutico , Macrófagos/efeitos dos fármacos , Metástase Neoplásica , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Meios de Cultivo Condicionados/química , Feminino , Células HCT116 , Células HT29 , Células Endoteliais da Veia Umbilical Humana , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Transplante de Neoplasias , Neovascularização Patológica
7.
PLoS One ; 9(4): e95983, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24752333

RESUMO

Tumor derived microparticles (TMPs) have recently been shown to contribute to tumor re-growth partially by inducing the mobilization and tumor homing of specific bone marrow derived pro-angiogenic cells (BMDCs). Since antiangiogenic drugs block proangiogenic BMDC mobilization and tumor homing, we asked whether TMPs from cells exposed to an antiangiogenic drug may affect BMDC activity and trafficking. Here we show that the level of VEGF-A is reduced in TMPs from EMT/6 breast carcinoma cells exposed to the anti-VEGF-A antibody, B20. Consequently, these TMPs exhibit reduced angiogenic potential as evaluated by a Matrigel plug and Boyden chamber assays. Consistently, BMDC mobilization, tumor angiogenesis, microvessel density and BMDC-colonization in growing tumors are reduced in mice inoculated with TMPs from B20-exposed cells as compared to mice inoculated with control TMPs. Collectively, our results suggest that the neutralization of VEGF-A in cultured tumor cells can block TMP-induced BMDC mobilization and colonization of tumors and hence provide another mechanism of action by which antiangiogenic drugs act to inhibit tumor growth and angiogenesis.


Assuntos
Micropartículas Derivadas de Células , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Bevacizumab , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Camundongos , Neovascularização Patológica/tratamento farmacológico
8.
Mol Cancer Ther ; 13(1): 202-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24150126

RESUMO

We previously reported that the host response to certain chemotherapies can induce primary tumor regrowth, angiogenesis, and even metastases in mice, but the possible impact of anti-VEGF-A therapy in this context has not been fully explored. We, therefore, used combinations of anti-VEGF-A with chemotherapy on various tumor models in mice, including primary tumors, experimental lung metastases, and spontaneous lung metastases of 4T1-breast and CT26-colon murine cancer cell lines. Our results show that a combined treatment with anti-VEGF-A and folinic acid/5-fluorouracil/oxaliplatin (FOLFOX) but not with anti-VEGF-A and gemcitabine/cisplatinum (Gem/CDDP) enhances the treatment outcome partly due to reduced angiogenesis, in both primary tumors and experimental lung metastases models. However, neither treatment group exhibited an improved treatment outcome in the spontaneous lung metastases model, nor were changes in endothelial cell numbers found at metastatic sites. As chemotherapy has recently been shown to induce tumor cell invasion, we tested the invasion properties of tumor cells when exposed to plasma from FOLFOX-treated mice or patients with cancer. While plasma from FOLFOX-treated mice or patients induced invasion properties of tumor cells, the combination of anti-VEGF-A and FOLFOX abrogated these effects, despite the reduced plasma VEGF-A levels detected in FOLFOX-treated mice. These results suggest that the therapeutic impact of antiangiogenic drugs varies in different tumor models, and that anti-VEGF-A therapy can block the invasion properties of tumor cells in response to chemotherapy. These results may implicate an additional therapeutic role for anti-VEGF-A when combined with chemotherapy.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Neoplasias Pulmonares/terapia , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Inibidores da Angiogênese/administração & dosagem , Animais , Anticorpos Anti-Idiotípicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Terapia Combinada , Fluoruracila , Humanos , Imunoterapia , Leucovorina , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Camundongos , Transplante de Neoplasias , Neoplasias Experimentais/imunologia , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Compostos Organoplatínicos , Fator A de Crescimento do Endotélio Vascular/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa