Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(8): 4934-4971, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36917457

RESUMO

Taxol (paclitaxel), the most well-known taxane diterpenoid, is the best-selling natural-source anticancer drug ever produced and one of the most common prescriptions in the treatment of breast, lung, and ovarian cancers, saving countless lives around the world. Structurally, Taxol possesses a highly oxygenated [6-8-6-4] core bearing 11 stereocenters, seven of which are contiguous chiral centers. Moreover, the extremely strained bicyclo[5.3.1] undecane ring system with a bridgehead double bond is a unique structural feature. All these features make Taxol a highly challenging synthetic target. Tremendous synthetic efforts from more than 60 research groups around the world have already culminated in ten total syntheses and three formal syntheses, as well as more than 60 synthetic model studies of Taxol. This review is intended to provide a long-overdue appraisal of the great achievements in the total syntheses of Taxol reported in the last few decades. In doing so, we summarize the development of synthesis toward Taxol from 1994 to 2022, including the evolution of synthetic strategy for accessing this complex molecular scaffold and key lessons learned from such endeavors. Finally, we briefly discuss the future of the research in this area.


Assuntos
Antineoplásicos , Paclitaxel , Paclitaxel/química , Paclitaxel/uso terapêutico
2.
Acc Chem Res ; 56(17): 2378-2390, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37584637

RESUMO

ConspectusSteroids continue to play a significant role in organic chemistry, medicinal chemistry, and drug discovery due to their important biological activities and diverse intriguing structures. Although synthetic organic chemists have successfully constructed and elaborated the classical [6-6-6-5] tetracyclic steroid skeleton for nearly a century, synthesis of the unusual rearranged steroids, particularly abeo-steroids with a medium-sized ring, remains a challenge in the synthetic community. Furthermore, the structures of abeo-steroids are complex and diverse, containing a seven-membered ring embedded in the fused or bridged A/B ring system and possessing numerous stereogenic centers. Besides their structural complexity, various abeo-steroids have shown remarkable biological activities. However, the relative scarcity of abeo-steroids in natural sources has impeded the systematic evaluation of their biological activities. In addition, direct strategies to build the core structures of abeo-steroids are very rare, partially because of the high ring-strain energies of their rearranged A/B ring systems. Therefore, the development of direct and efficient synthetic approaches to these complex molecules is highly desired.Our long-standing interest in the total synthesis of abeo-steroids and the development of new cycloaddition reactions for streamlining complex molecule synthesis have led us to develop a series of unique and powerful intramolecular cycloaddition strategies to access a diverse array of highly strained abeo-steroids. These strategies include Ru-catalyzed [5 + 2] cycloaddition, acid-promoted type I [5 + 2] cycloaddition, Rh-catalyzed [2 + 2 + 1] cycloaddition, and type II [5 + 2] cycloaddition. Since 2018, we have accomplished the first total syntheses of five synthetically challenging abeo-steroids, i.e., bufogargarizins A and B, phomarol, bufospirostenin A, and cyclocitrinol, thus facilitating the evaluation of their pharmacological potentials. In this Account, we summarize our laboratory's systematic efforts in the total synthesis of these abeo-steroids via cycloaddition strategies. We highlight the efficiency and versatility of each cycloaddition strategy for constructing structurally complex abeo-steroid cores by forming the A/B ring system. The evolution of each strategy and key lessons learned from the synthetic journey are also discussed. We believe that our unique perspective in this field will promote advances in the total synthesis of abeo- and related steroids.

3.
J Org Chem ; 88(20): 14826-14830, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37821441

RESUMO

A new approach to construct the tricyclic framework of the diterpenoid vinigrol is described. The challenging 1,5-butanodecahydronaphthalene core was established efficiently and diastereoselectively through a combination of type II [5 + 2] cycloaddition and Wolff rearrangement. In addition, a formal total synthesis of (-)-vinigrol was achieved in 12 steps, in which Baran's intermediate was efficiently produced from a known compound by a two-step sequence involving a stereoselective α-hydroxylation and a diastereoselective α-ketol rearrangement.

4.
Physiol Plant ; 175(5): e14028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882308

RESUMO

Solanum nigrum, which belongs to the Solanaceae family, is an essential plant for food and medicine. It has many important secondary compounds, including glycoproteins, glycoalkaloids, polyphenolics, and anthocyanin-rich purple berries, as well as many ideal characteristics such as self-fertilization, a short life cycle and a small genome size that make it a potential model plant for the study of secondary metabolism and fruit development. In this study, we report a highly efficient and convenient tissue culture, transformation and genome editing method for S. nigrum using leaf segments after 8 weeks of tissue culture, with a required period from transformation initiation to harvest of about 3.5 months. Our results also show multi-shoot regeneration per leaf segment and a 100% shoot regeneration efficiency in a shoot regeneration medium. Moreover, over 82% of kanamycin-resistant plants exhibited strong green fluorescence marker protein expression, with genetic integration confirmed by PCR results and green fluorescence protein expression in their T1 progeny. Furthermore, we successfully applied this transformation method to achieve an average of 83% genome editing efficiency of SnMYB1, a gene involved in regulating the anthocyanin biosynthetic pathway of S. nigrum in response to missing nutrients. Taken together, the combination of highly efficient tissue culture, transformation and genome editing systems can provide a powerful platform for supporting fundamental research on the molecular mechanisms of secondary metabolism, fruit development, and production of important compounds by biotechnology.


Assuntos
Solanum nigrum , Solanum nigrum/genética , Solanum nigrum/metabolismo , Edição de Genes , Verduras/genética , Antocianinas/metabolismo , Frutas/genética , Transformação Genética
5.
Yi Chuan ; 45(6): 526-535, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340966

RESUMO

MYB is one of the largest transcription factor families in plants. Among them, the R3-MYB transcription factor RADIALIS (RAD) plays a very important role in the flowers development in Antirrhinum majus. In this study, a R3-MYB gene similar to RAD was found by analyzing the genome of A. majus, which was named AmRADIALIS-like 1 (AmRADL1). The gene function was predicted through bioinformatics. The relative expression levels in different tissues and organs of wild-type A. majus were analyzed by qRT-PCR. AmRADL1 was overexpressed in A. majus, and the transgenic plants were analyzed by morphological observation and histological staining. The results showed that the open reading frame (ORF) of AmRADL1 gene was 306 bp in length, encoding 101 amino acids. It has typical SANT domain, and the C-terminal contains a CREB motif, which was highly homologous to tomato SlFSM1. The results of qRT-PCR showed that AmRADL1 was expressed in roots, stems, leaves and flowers, and the expression level was higher in flowers. Further analysis of its expression in different floral organs showed that AmRADL1 had the highest expression in carpel. The results of histological staining analysis of the transgenic plants showed that compared with the wild type, although the size of the carpel cells of the transgenic plants did not change significantly, the placenta area in the carpel became smaller and the number of cell decreased. In summary, AmRADL1 may be involved in the regulation of carpel development, but the specific mechanism of action in carpel remains to be further studied.


Assuntos
Antirrhinum , Antirrhinum/genética , Antirrhinum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fenótipo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/genética , Flores/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
6.
J Am Chem Soc ; 144(23): 10162-10167, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35657330

RESUMO

The first asymmetric total synthesis of bioactive diterpenoid hypoestin A with an unprecedented [5-8-5-3] tetracyclic skeleton is accomplished in 15 steps from commercially available (R)-limonene. Furthermore, the second asymmetric total syntheses of sesterterpenoids albolic acid and ceroplastol II in 21 steps are also reported. The synthetically challenging and highly functionalized [X-8-5] (X = 5 or 7) tricarbocyclic ring systems found in hypoestin A, albolic acid, ceroplastol II, and schindilactone A, as well as other natural products, are efficiently and directly constructed via a unique intramolecular Pauson-Khand reaction of an allene-yne. This work represents the first reported use of the Pauson-Khand reaction to access synthetically challenging eight-membered-ring systems in natural product synthesis.


Assuntos
Estereoisomerismo
7.
J Am Chem Soc ; 144(41): 18823-18828, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36198113

RESUMO

The first total synthesis of daphgraciline has been achieved, which also represents the first example of the synthesis of Daphniphyllum yuzurine-type alkaloids (∼50 members). The unique bridged azabicyclo[4.3.1] ring system in the yuzurine-type subfamily was efficiently and diastereoselectively assembled via a mild type II [5+2] cycloaddition for the first time. The compact tetracyclic [6-7-5-5] skeleton was installed efficiently via an intramolecular Diels-Alder reaction, followed by a benzilic acid-type rearrangement. The synthetically challenging spiro tetrahydropyran moiety in the final product was installed diastereoselectively via a TiIII-mediated reductive epoxide coupling reaction. Potential access to enantioenriched daphgraciline is presented.


Assuntos
Alcaloides , Estrutura Molecular , Reação de Cicloadição , Compostos de Epóxi , Estereoisomerismo
8.
Chem Rev ; 120(13): 5910-5953, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32343125

RESUMO

Natural products containing eight-membered carbocycles constitute a class of structurally intriguing and biologically important molecules such as the famous diterpenes taxol and vinigrol. Such natural products are being increasingly investigated because of their fascinating architectural features and potent medicinal properties. However, synthesis of natural products with cyclooctane moieties has proved to be highly challenging. This review highlights the recently completed total syntheses of natural products with eight-membered carbocycles with a focus on strategic considerations. A collection of 27 representative studies from the literature covering the decade from 2009 to 2019 is described in chronological order with relevant studies grouped together, including syntheses of the same natural product by different research groups using different strategies. Finally, a summary and outlook including a discussion of the major features of each strategy used in the syntheses are presented. This review illustrates the diversity and creativity in the elegant synthetic designs of eight-membered carbocycles. We hope this review will provide timely illumination and beneficial guidance for future synthetic efforts for organic chemists who are interested in this area.


Assuntos
Produtos Biológicos/síntese química , Hidrocarbonetos Cíclicos/síntese química , Produtos Biológicos/química , Ciclização , Hidrocarbonetos Cíclicos/química , Conformação Molecular
9.
Phys Chem Chem Phys ; 24(29): 17744-17750, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35843214

RESUMO

The 2D self-assemblies and structural transitions of pentacene on a Cd(0001) surface have been investigated with low temperature scanning tunneling microscopy (STM). With increasing coverage, pentacene molecules show a structural evolution from the initial disordered gas-like phase through the porous network phase to the herringbone phase, and finally to the brickwall phase at the full monolayer. In particular, orientational frustration and cooperative rotation of pentacene molecules take place in the herringbone phase. Furthermore, successive STM scanning leads to structural interconversions between the porous network phase, herringbone phase, and brickwall phase, indicating the metastability of the 2D assembled structures of pentacene on Cd(0001). These structural transitions and interconversion can be attributed to the interplay between the repulsive electrostatic forces resulting from the charge transfer from the substrate to pentacene and the attractive effects originating from dipole-dipole interactions and intermolecular van der Waals forces.

10.
Phys Chem Chem Phys ; 24(17): 10292-10296, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437551

RESUMO

Chiral resolution is of fundamental importance to conglomerate or racemate crystallization. Here we demonstrate that the spontaneous chiral resolution of pentahelicene racemates occurred in the monolayer domains. When deposited on a Cd(0001) surface, pentahelicene molecules crystallize into a commensurate (6 × 6)R0° structure built mainly from homochiral trimers. Spontaneous chirality separation takes place in the form of opposite mirror domains, where 2D enantiomorphism is not expressed by the oblique adlattice, but by the supramolecular chirality of the pentahelicene trimers. Furthermore, annealing the sample or extreme close-packing lead to the presence of lattice handedness through the formation of a porous network structure or an edge-on phase. These results provide valuable insight for 2D conglomerate crystallization and stereochemical recognition.

11.
Yi Chuan ; 44(6): 521-530, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35729100

RESUMO

The unique capitulum of Asteraceae has important ornamental and research value. Few studies have described the complex molecular mechanism of flower development. In this study, SvGLOBOSA(SvGLO), the MADS-box gene of Senecio vulgaris, was identified by screening the transcriptome data, and its function was examined. The gene structure was analyzed and its function was predicted through bioinformatics. The relative expression levels in different tissues of wild-type S. vulgaris were analyzed by qRT-PCR. SvGLO was overexpressed in Solanum nigrum and morphological observations were made. Histological staining was used in analyzing the histological changes in the ovary of transgenic S. nigrum. The results showed that the open reading frame of SvGLO was 591 bp long, encoding 196 amino acids. It has typical MADS-box and K-box domains and contains a PI motif at the C-terminal. SvGLO belongs to the PI/GLO subfamily of class B MADS-box genes. qRT-PCR results showed that SvGLO was highly expressed in inflorescence tissues but not in vegetative organs. In SvGLO-overexpressed S. nigrum, the sepals showed some characteristics of petals, carpels transformed into stamen-like organs, and fruit development was abnormal. Histological staining revealed that the morphology of ovary wall cells of transgenic S. nigrum was similar to that of anther wall cells of the stamen of wild-type S. vulgaris. Therefore, SvGLO may be involved in the regulation of petal and stamen development in S. vulgaris.


Assuntos
Proteínas de Domínio MADS , Senécio , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Senécio/metabolismo
12.
J Am Chem Soc ; 143(42): 17862-17870, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34641680

RESUMO

Taxol is one of the most famous natural diterpenoids and an important anticancer medicine. Taxol represents a formidable synthetic challenge and has prompted significant interest from the synthetic community. However, in all the previous syntheses of Taxol, there have been no reports of closing the desired eight-membered ring through C1-C2 bond formation. Furthermore, the existence of Taxol-resistant tumors and side effects of Taxol make the development of new approaches to synthesize Taxol and its derivatives highly desirable. Here, we report the asymmetric total synthesis of Taxol using a concise approach through 19 isolated intermediates. The synthetically challenging eight-membered ring was constructed efficiently by a diastereoselective intramolecular SmI2-mediated pinacol coupling reaction to form the C1-C2 bond. The unique biomimetic oxygen ene reaction and the newly developed facile tandem C2-benzoate formation and C13 side chain installation improved the efficiency of the synthesis. The mild oxygen ene reaction under light conditions would be an alternative reaction involved in Taxol biosynthesis. This new convergent approach will allow the diverse creation of Taxol derivatives to enable further biological research.


Assuntos
Paclitaxel/síntese química , Ciclização , Estrutura Molecular , Estereoisomerismo
13.
Acc Chem Res ; 53(3): 703-718, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32069021

RESUMO

Natural products containing bridged ring systems are widely identified and show significant biological activity. The development of efficient synthesis reactions and strategies to construct bridged ring systems is a long-standing but very significant challenge in organic chemistry. In 2014, our group developed a unique type II [5 + 2] cycloaddition reaction that provides a facile and direct methodology for constructing highly functionalized bridged bicyclo[4.3.1], bicyclo[4.4.1], bicyclo[5.4.1], bicyclo[6.4.1], and other bicyclo[m.n.1] systems containing a strained bridgehead double bond. In this Account, we summarize the methodology development and report the results of application of our unique strategy for the total synthesis of several natural products with bridged ring systems (i.e., cyclocitrinol, cerorubenic acid-III, and vinigrol) during the past 5 years in our laboratory. In the first part, we introduce the logic behind the design and discovery of type II [5 + 2] cycloadditions. The substrates can be easily synthesized by a modular approach, followed by base-promoted group elimination under heat to form an oxidopyrylium ylide, which can undergo cycloaddition under relatively mild conditions with a variety of double bonds to generate bridged bicyclo[m.n.1] frameworks in high yield. The diastereocontrol and unique endo selectivity of this methodology are favorable for further application to the synthesis of complex natural products. In the second part, we highlight our endeavors in the total synthesis of several different types of molecules bearing bridged ring systems using our methodology. The bridged bicyclo[4.4.1] system is the core structure of two different types of natural products, cyclocitrinol and cerorubenic acid-III, that can be efficiently constructed by type II [5 + 2] cycloadditions. The development of suitable strategies and methods for site-selective cleavage of the C-O bond of the oxa-[3.2.1] ring system in the products of type II [5 + 2] cycloadditions is also discussed and highlighted during the syntheses. Moreover, the bridged bicyclo[5.3.1] system is the core structure of vinigrol, which can be constructed through a novel ring contraction sequence of the bicyclo[5.4.1] system formed by a type II [5 + 2] cycloaddition. By combining with a ring contraction cascade, we believe that type II [5 + 2] cycloadditions have the potential to be used as a unified approach to constructing natural products containing bridged bicyclo[m.n.1] frameworks.

14.
Phys Chem Chem Phys ; 23(42): 24344-24348, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34676838

RESUMO

We report the nucleation and two dimensional (2D) crystallization of the helical aromatic hydrocarbon pentahelicene ([5]H) on the semimetallic Bi(111) surface studied via low-temperature scanning tunneling microscopy. Individual homochiral dimers and heterochiral trimers appear on the substrate at a low coverage. With an increase in the coverage, a chiral phase transition takes place from the 2D conglomerate of [5]H dimers to the 2D racemate of [5]H trimers. The heterochiral [5]H trimers reveal a wavy arrangement due to the swing of 5[H] trimer rows after every second or third trimers. The swing mechanism of the trimer rows can be attributed to the steric repulsion between the adjacent trimers with same handedness.

15.
Chem Soc Rev ; 49(19): 7015-7043, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32869796

RESUMO

Type II intramolecular cycloadditions ([4+2], [4+3], [4+4] and [5+2]) have emerged recently as an efficient and powerful strategy for the construction of bridged ring systems. In general, type II cycloadditions provide access to a wide range of bridged bicyclo[m.n.1] ring systems with high regio- and diastereoselectivity in an easy and straightforward manner. In each section of this review, an overview of the corresponding type II cycloadditions is presented, which is followed by highlights of method development and synthetic applications in natural product synthesis. The goal of this review is to provide a survey of recent advances in the field covering literature up to 2020. The review will serve as a useful reference for organic chemists engaged in the total synthesis of natural products containing bridged bicyclo[m.n.1] ring systems and provide strong stimulus for invention and further advances in this exciting research field.

16.
J Am Chem Soc ; 141(40): 15773-15778, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545036

RESUMO

A new strategy was developed for the asymmetric total synthesis of (-)-vinigrol. The strategy involved a linear sequence of 15 steps from 3-methyl-butanal (14 steps from chloro-dihydrocarvone) and did not need protecting groups. The synthetically challenging 1,5-butanodecahydronaphthalene core was constructed efficiently via a type II intramolecular [5+2] cycloaddition, followed by a unique ring-contraction cascade.


Assuntos
Diterpenos/síntese química , Cristalografia por Raios X , Reação de Cicloadição , Diterpenos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo
17.
Phys Rev Lett ; 121(25): 256001, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608818

RESUMO

When adsorbed on solids, water molecules are usually arranged into a honeycomb hydrogen-bond network. Here we report the discovery of a novel monolayer ice built exclusively from water hexamers but without shared edges, distinct from all conventional ice phases. Water grown on graphite crystalizes into a robust monolayer ice after annealing, attaining an exceedingly high density of 0.134 Å^{-2}. Unlike chemisorbed ice on metal surfaces, the ice monolayer can translate and rotate on graphite terraces and grow across steps, confirming its two-dimensional nature. First-principles calculations identify the monolayer ice structure as a robust self-assembly of closely packed water hexamers without edge sharing, whose stability is maintained by maximizing the number of intralayer hydrogen bonds on inert surfaces.

18.
Phys Chem Chem Phys ; 20(10): 7125-7131, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29479594

RESUMO

Chiral switching of the self-assembled domains of CuPc molecules on the Cd(0001) surface has been investigated by means of a low temperature scanning tunneling microscopy (STM). With the coverage increasing, the CuPc molecules show the structural evolutions from an initial gas-like state to a network phase, a square phase, and finally to a compact phase at full monolayer. In the network and square phases, the achiral CuPc molecules reveal both the point chirality and chiral domains. In particular, the chirality of network domain can be switched from one enantiomer to another driven by the electric filed from a STM tip, which can also lead to the lattice rotation of network phase. These results demonstrate that (i) there is strong interaction between the CuPc molecules and STM tip; (ii) the adsorbed CuPc molecules carry considerable net charge or polarizability due to the charge transfer; (iii) the network phase has a low barrier for the interconversion between right- and left-handed domains. Our findings are significant for the understanding and control of the domain's chirality in the self-assembled structures.

19.
J Org Chem ; 82(7): 3463-3481, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28252297

RESUMO

The C8 and C9 stereogenic centers of the basiliolide/transtaganolide family have been established stereoselectively using a cyclopropane ring-opening strategy, which has been studied by DFT calculations of a variety of lithium-chelating models. The highly functionalized intermediates obtained in this strategy were successfully employed for the diastereoselective total synthesis of (±)-basiliolide B and (±)-epi-8-basiliolide B. The decalin core with a lactone bridge was constructed via a 2-pyrone Diels-Alder (DA) cycloaddition, and the unprecedented seven-membered acyl ketene acetal was established by a biomimetic intramolecular O-acylation cyclization.


Assuntos
Pironas/síntese química , Conformação Molecular , Pironas/química , Estereoisomerismo
20.
Molecules ; 22(5)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28471385

RESUMO

Molecular rotors with an off-center axis and the chiral feature of achiral CuPc molecules on a semi-metallic Bi(111) surface have been investigated by means of a scanning tunneling microscopy (STM) at liquid nitrogen (LN2) temperature. The rotation axis of each CuPc molecular rotor is located at the end of a phthalocyanine group. As molecular coverage increases, the CuPc molecules are self-assembled into various nanoclusters and finally into two-dimensional (2D) domains, in which each CuPc molecule exhibits an apparent chiral feature. Such chiral features of the CuPc molecules can be attributed to the combined effect of asymmetric charge transfer between the CuPc and Bi(111) substrate, and the intermolecular van der Waals interactions.


Assuntos
Bismuto/química , Dimerização , Microscopia de Tunelamento , Estereoisomerismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa