Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Opt Express ; 31(26): 44259-44272, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178501

RESUMO

Radiographic imaging using X-rays is a tool for basic research and applications in industry, materials science, and medical diagnostics. In this article, we present a novel approach for the generation of X-rays using a vacuum-free microplasma by femtosecond fiber laser. By tightly focusing a laser pulse onto a micrometer-sized solid density near-surface plasma from a rotating copper target, we demonstrate the generation of Cu K-photons (8-9 keV) with high yield ∼ 1.6 × 109 phot/s/2π, and with a source size diameter of approximately 10 microns. Femtosecond fiber laser allows working with a high repetition rate (∼2 MHz) and moderate energy levels (10-40 µJ), ensuring the effective quasi-continuous generation of X-ray photons. Furthermore, we introduce a hybrid scheme that combines the tightly focusing laser-plasma X-ray generator with an online control unit for microplasma size source based on the back-reflected second harmonic generated in the laser-induced microplasma. The compactness and high performance of this vacuum-free femtosecond fiber laser microplasma X-ray source makes it a promising solution for advanced radiographic applications. Our preliminary results on the creation of a microfocus X-ray source provide insights into the feasibility and potential of this innovative approach.

2.
Opt Lett ; 47(4): 985-988, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167575

RESUMO

Precise control of the nonlinear optical phenomena is the limiting factor for the spectral broadening and pulse compression techniques for high-power laser systems. Here we demonstrate that generation of the blue and red components under filamentation of 4.55-µm mid-IR pulses can be easily adjusted independently through the use of inert and molecular gases, while uniform broadening up to 1-µm bandwidth at the 1/e2 level relies on the proper choice of gas mixture and its compounds partial pressure. Such synthesized media provide a feasible route for the free of damage control of pulse spectral broadening and compression for gigawatt peak power laser systems operating in the mid-IR. Additional management of a generated spectrum can be realized through the adjustment of focusing conditions. The resulted pulse is compressed by a factor of 2.6 down to 62 fs pulse duration (4.1 optical cycles) with additional dispersion compensation. Controllable nonlinear compression down to four optical cycles keeping the millijoule energy level of a mid-IR laser pulse provides direct access to extreme nonlinear optics.

3.
Lasers Med Sci ; 37(1): 627-638, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33830382

RESUMO

The objective of this study was to describe the dynamics of blood plasma heating and coagulation processes carried out by continuous laser radiation with wavelengths 1.55 and 1.94 µm through bare-tip fibers and fibers with radial output (radial fibers) used for endovenous laser coagulation (EVLC). The study was performed in previously thawed frozen donor blood plasma using high-speed shooting of the heating process through the shadow optical method. It has been shown that in the case of highly water-absorbed laser radiations, convection, explosive, and small-bubble boiling play a major role in the process of heat transfer and coagulation. It has been shown that in the case of radiation with wavelength λ = 1.94 µm, effective heat transfer begins at significantly lower levels of power compared to radiations with λ = 1.55 µm. It has been established that heat transfer is sharply asymmetrical and is directed mainly upwards and forwards (bare-tip fiber) or upwards (radial fibers). For a wavelength of 1.94 µm, the effect of self-cleaning of the fiber surface from coagulated plasma fragments was found. Except for short-term acts of explosive boiling, the heat transfer is asymmetrical and directed mainly upwards. This effect should lead to uneven heating and thermal damage to the vein wall with the maximum at its upper part. For EVLC, the use of radiation with a wavelength of 1.94 µm is more efficient and safer.


Assuntos
Fotocoagulação a Laser , Terapia a Laser , Temperatura Alta , Plasma , Veia Safena
4.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077218

RESUMO

Laser-induced forward transfer (LIFT) is a useful technique for bioprinting using gel-embedded cells. However, little is known about the stresses experienced by cells during LIFT. This paper theoretically and experimentally explores the levels of laser pulse irradiation and pulsed heating experienced by yeast cells during LIFT. It has been found that only 5% of the cells in the gel layer adjacent to the absorbing Ti film should be significantly heated for fractions of microseconds, which was confirmed by the fact that a corresponding population of cells died during LIFT. This was accompanied by the near-complete dimming of intracellular green fluorescent protein, also observed in response to heat shock. It is shown that microorganisms in the gel layer experience laser irradiation with an energy density of ~0.1-6 J/cm2. This level of irradiation had no effect on yeast on its own. We conclude that in a wide range of laser fluences, bioprinting kills only a minority of the cell population. Importantly, we detected a previously unobserved change in membrane permeability in viable cells. Our data provide a wider perspective on the effects of LIFT-based bioprinting on living organisms and might provide new uses for the procedure based on its effects on cell permeability.


Assuntos
Bioimpressão , Bioimpressão/métodos , Contagem de Células , Lasers , Luz , Saccharomyces cerevisiae
5.
Opt Express ; 29(21): 33592-33601, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809169

RESUMO

We proposed a complex method based on a combination of shadow photography and time-resolved Raman spectroscopy to observe the non-stationary laser-induced supercritical state in molecular media. Shadow photography is applied for retrieving pressure values, while Raman spectroscopy with molecular dynamics for temperature estimation. Time resolution of 0.25 ns is achieved by varying the delay between the pump (creating an extreme energy delivery) and the probe laser pulses by the self-made digital delay electronic circuit . The proposed method was employed in liquid carbon dioxide and water. Under nanosecond laser pulse impact, the estimated temperatures and pressures (∼700 K and ∼0.5 GPa) achieved in media are higher than the critical parameters of the samples.

6.
Lasers Med Sci ; 36(8): 1599-1608, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33159310

RESUMO

The objective of this study was to describe the dynamics of water heating carried out by continuous laser radiation with wavelengths 1.47, 1.55, and 1.94 µm with different types of fibers used for endovenous laser coagulation. The study was conducted in water using high-speed surveying of the heating process through the shadow optical method. It has been shown that in the case of highly water-absorbed laser radiations, convection and boiling play a major role in the process of heat transfer. It has been shown that in the case of radiation with λ = 1.94 µm that is heavily absorbed by water, effective heat transfer begins at significantly lower levels of power compared to the weaker-absorbed radiations with λ = 1.47 and 1.55 µm. Mathematical models based only on thermal conductivity inadequately describe the process of real heat transfer during endovenous laser coagulation. It has been established that heat transfer is sharply asymmetrical and is directed mainly up-and-forward (bare-tip fiber) or upward ("radial" and "two-ring" fibers). Heat transfer for laser light with wavelength 1.94 µm is most effective than for 1.47 and 1.55 µm.


Assuntos
Terapia a Laser , Veia Safena , Temperatura Alta , Fotocoagulação a Laser , Água
7.
Int J Syst Evol Microbiol ; 70(2): 1192-1202, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31769750

RESUMO

A novel aerobic moderately thermophilic bacterium, strain 3753OT, was isolated from a Chukotka hot spring (Arctic, Russia) using the newly developed technology of laser engineering of microbial systems. Сells were regular short rods, 0.4×0.8-2.0 µm in size, with a monoderm-type envelope and a single flagellum. The temperature and pH ranges for growth were 42-60 °C and pH 6.5-8.5, the optima being 50-54 °C and pH 7.3. Strain 3753OT grew chemoorganoheterotrophically on a number of carbohydrates or peptidic substrates and volatile fatty acids, and chemolithoautotrophically with siderite (FeCO3) as the electron donor. The major cellular fatty acid was branched C19 : 0. Phosphatidylethanolamine, phosphatidylglycerol and two unidentified phospholipids as well as two yellow carotenoid-type pigments were detected in the polar lipid extract. Strain 3753OT was inhibited by chloramphenicol, polymyxin B, vancomycin, streptomycin, neomycin and kanamycin, but resistant to the action of novobiocin and ampicillin. The DNA G+C content was 69.9 mol%. The 16S rRNA gene as well as 51 conservative protein sequence-based phylogenetic analyses placed strain 3753OT within the previously uncultivated lineage OLB14 in the phylum Chloroflexi. Taking into account the phylogenetic position as well as phenotypic properties of the novel isolate, the novel genus and species Tepidiforma bonchosmolovskayae gen. nov., sp. nov., within the Tepidiformaceae fam. nov., the Tepidiformales ord. nov. and the Tepidiformia classis nov. are proposed. The type strain of Tepidiforma bonchosmolovskayae is 3753OT (=VKM B-3389T=KTCT 72284T).


Assuntos
Chloroflexi/classificação , Fontes Termais/microbiologia , Filogenia , Regiões Árticas , Técnicas de Tipagem Bacteriana , Composição de Bases , Carotenoides/química , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA
8.
Molecules ; 25(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228172

RESUMO

The supercritical CO2 (scCO2) is widely used as solvent and transport media in different technologies. The technological aspects of scCO2 fluid applications strongly depend on spatial-temporal fluctuations of its thermodynamic parameters. The region of these parameters' maximal fluctuations on the p-T (pressure-temperature) diagram is called Widom delta. It has significant practical and fundamental interest. We offer an approach that combines optical measurements and molecular dynamics simulation in a wide range of pressures and temperatures. We studied the microstructure of supercritical CO2 fluid and its binary mixture with ethanol in a wide range of temperatures and pressures using molecular dynamics (MD) simulation. MD is used to retrieve a set of optical characteristics such as Raman spectra, refractive indexes and molecular refraction and was verified by appropriate experimental measurements. We demonstrated that in the Widom delta the monotonic dependence of the optical properties on the CO2 density is violated. It is caused by the rapid increase of density fluctuations and medium-sized (20-30 molecules) cluster formation. We identified the correlation between cluster parameters and optical properties of the media; in particular, it is established that the clusters in the Widom delta acts as a seed for clustering in molecular jets. MD demonstrates that the cluster formation is stronger in the supercritical CO2-ethanol mixture, where the extended binary clusters are formed; that is, the nonlinear refractive index significantly increased. The influence of the supercritical state in the cell on the formation of supersonic cluster jets is studied using the Mie scattering technique.


Assuntos
Dióxido de Carbono/química , Etanol/química , Fenômenos Ópticos , Simulação de Dinâmica Molecular , Dinâmica não Linear , Refratometria , Análise Espectral Raman
9.
Molecules ; 25(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316997

RESUMO

To obtain a supported heterogeneous catalyst, laser ablation of metallic palladium in supercritical carbon dioxide was performed in the presence of a carrier, microparticles of γ-alumina. The influence of the ablation process conditions-including supercritical fluid density, ablation, mixing time of the mixture, and laser wavelength-on the completeness and efficiency of the deposition of palladium particles on the surface of the carrier was studied. The obtained composites were investigated by scanning and transmission electron microscopy using energy dispersive spectroscopy. We found that palladium particles were nanosized and had a narrow size distribution (2-8 nm). The synthesized composites revealed high activity as catalysts in the liquid-phase hydrogenation of diphenylacetylene.


Assuntos
Dióxido de Carbono/química , Paládio/química , Óxido de Alumínio/química , Catálise , Cromatografia com Fluido Supercrítico , Hidrogenação , Lasers de Estado Sólido , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanocompostos/química , Nanocompostos/ultraestrutura , Tamanho da Partícula , Espectrometria por Raios X
10.
Opt Lett ; 44(10): 2550-2553, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31090729

RESUMO

We report on entering a new era of mid-IR femtosecond lasers based on amplification in a relatively new gain chalcogenide medium, Fe:ZnSe. Our hybrid all-solid-state laser system is based on direct pulse amplification of femtosecond seed from three-stage AGS-based-optical parametric amplification (OPA) in a Fe:ZnSe laser crystal optically pumped by a Cr:Yb:Ho:YSGG Q-switched nanosecond laser. The development of the pump source with output energy up to 90 mJ operating at a 10 Hz repetition rate regime and highly efficient grating compressor (80%) provides 3.5-mJ 150-fs femtosecond pulses centered at 4.4 µm. Diode-pumped Er:YAG/Er:YLF lasers make it possible to increase the beam quality and repetition rate of the proposed laser system up to 100 Hz. Focusing such a laser radiation into the ∼3λ beam diameter allows us to reach a focus laser intensity up to 1016 W/cm2 which is only an order of magnitude lower than a relativistic intensity of 1017 W/cm2 and enough to drive strong nonlinear optics in mid-IR. We show as a proof-of-principle experiment the generation of four-octave spanning (from 350 nm up to 5.5 µm) supercontinuum in xenon.

11.
Opt Express ; 26(10): 13229-13238, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801350

RESUMO

Direct measurement of pressure dependent nonlinear refractive index of CO2 and Xe in subcritical and supercritical states are reported. In the vicinity of the ridge (or the Widom line), corresponding to the maximum density fluctuations, the nonlinear refractive index reaches a maximum value (up to 4.8*10-20m2/W in CO2 and 3.5*10-20m2/W in Xe). Anomalous behavior of the nonlinear refractive index in the vicinity of a ridge is caused by the cluster formation. That corresponds to the results of our theoretical assumption based on the modified Langevin theory.

12.
Opt Lett ; 41(24): 5760-5763, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973524

RESUMO

A new supercontinuum (SC) source from high-pressure gas, liquid, and supercritical fluid CO2 aggregate states that covers more than two octaves (from 400 nm up to 2 µm) is successively reported by using a 200 fs pulsed pump at 1.24 µm under femtosecond filamentation. The key features of the proposed source are the highly adjustable nonlinear properties (comparable with condensed matter) of the medium. This allows an easy-to-achieve filamentation process, even at microjoule laser pulse energies, giving the ultrabright and broadband SC. The molecular vibrations significantly modify the SC spectrum; as a result, a bright peak in a 1.4-1.9 µm is generated. Its position could be finely tuned by the pressure and temperature. We report that the generation of the SC in the monofilamentation regime (unlike multifilamentation) is more stable and promising for seeded optical parametric amplifiers, and the most efficient SC generation is achieved in the liquid phase of CO2.

13.
Polymers (Basel) ; 15(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896364

RESUMO

The formation of a dense fibrous capsule around the foreign body and its contracture is the most common complication of biomaterial implantation. The aim of our research is to find out how the surface of the implant influences the inflammatory and fibrotic reactions in the surrounding tissues. We made three types of implants with a remote surface topography formed of polylactide granules with different diameters: large (100-200 µm), medium (56-100 µm) and small (1-56 µm). We placed these implants in skin pockets in the ears of six chinchilla rabbits. We explanted the implants on the 7th, 14th, 30th and 60th days and performed optical coherence tomography, and histological, immunohistochemical and morphometric studies. We examined 72 samples and compared the composition of immune cell infiltration, vascularization, the thickness of the peri-implant tissues, the severity of fibrotic processes and α-SMA expression in myofibroblasts. We analyzed the scattering coefficient of tissue layers on OCT scans. We found that implants made from large granules induced a milder inflammatory process and slower formation of a connective tissue capsule around the foreign body. Our results prove the importance of assessing the surface texture in order to avoid the formation of capsular contracture after implantation.

14.
Micromachines (Basel) ; 14(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37374737

RESUMO

Laser printing with cell spheroids can become a promising approach in tissue engineering and regenerative medicine. However, the use of standard laser bioprinters for this purpose is not optimal as they are optimized for transferring smaller objects, such as cells and microorganisms. The use of standard laser systems and protocols for the transfer of cell spheroids leads either to their destruction or to a significant deterioration in the quality of bioprinting. The possibilities of cell spheroids printing by laser-induced forward transfer in a gentle mode, which ensures good cell survival ~80% without damage and burns, were demonstrated. The proposed method showed a high spatial resolution of laser printing of cell spheroid geometric structures at the level of 62 ± 33 µm, which is significantly less than the size of the cell spheroid itself. The experiments were performed on a laboratory laser bioprinter with a sterile zone, which was supplemented with a new optical part based on the Pi-Shaper element, which allows for forming laser spots with different non-Gaussian intensity distributions. It is shown that laser spots with an intensity distribution profile of the "Two rings" type (close to Π-shaped) and a size comparable to a spheroid are optimal. To select the operating parameters of laser exposure, spheroid phantoms made of a photocurable resin and spheroids made from human umbilical cord mesenchymal stromal cells were used.

15.
Stem Cell Res Ther ; 14(1): 81, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046354

RESUMO

BACKGROUND: There is an urgent clinical need for targeted strategies aimed at the treatment of bone defects resulting from fractures, infections or tumors. 3D scaffolds represent an alternative to allogeneic MSC transplantation, due to their mimicry of the cell niche and the preservation of tissue structure. The actual structure of the scaffold itself can affect both effective cell adhesion and its osteoinductive properties. Currently, the effects of the structural heterogeneity of scaffolds on the behavior of cells and tissues at the site of damage have not been extensively studied. METHODS: Both homogeneous and heterogeneous scaffolds were generated from poly(L-lactic acid) methacrylated in supercritical carbon dioxide medium and were fabricated by two-photon polymerization. The homogeneous scaffolds consist of three layers of cylinders of the same diameter, whereas the heterogeneous (gradient pore sizes) scaffolds contain the middle layer of cylinders of increased diameter, imitating the native structure of spongy bone. To evaluate the osteoinductive properties of both types of scaffold, we performed in vitro and in vivo experiments. Multiphoton microscopy with fluorescence lifetime imaging microscopy was used for determining the metabolic states of MSCs, as a sensitive marker of cell differentiation. The results obtained from this approach were verified using standard markers of osteogenic differentiation and based on data from morphological analysis. RESULTS: The heterogeneous scaffolds showed improved osteoinductive properties, accelerated the metabolic rearrangements associated with osteogenic differentiation, and enhanced the efficiency of bone tissue recovery, thereby providing for both the development of appropriate morphology and mineralization. CONCLUSIONS: The authors suggest that the heterogeneous tissue constructs are a promising tool for the restoration of bone defects. And, furthermore, that our results demonstrate that the use of label-free bioimaging methods can be considered as an effective approach for intravital assessment of the efficiency of differentiation of MSCs on scaffolds.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Alicerces Teciduais/química , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual/métodos , Diferenciação Celular , Células-Tronco , Células Cultivadas
16.
Gels ; 8(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36286117

RESUMO

Luminescent aerogels based on sodium alginate cross-linked with ions of rare earth elements (Eu3+, Tb3+, Sm3+) and containing phenanthroline, thenoyltrifluoroacetone, dibenzoylmethane, and acetylacetone as ligands introduced into the matrix during the impregnation of alginate aerogels (AEG), were obtained for the first time in a supercritical carbon dioxide medium. The impregnation method used made it possible to introduce organically soluble sensitizing ligands into polysaccharide matrices over the entire thickness of the sample while maintaining the porous structure of the aerogel. It is shown that the pore size and their specific area are 150 nm and 270 m2/g, respectively. Moreover, metal ions with content of about 23 wt.%, acting as cross-linking agents, are uniformly distributed over the thickness of the sample. In addition, the effect of sensitizing ligands on the luminescence intensity of cross-linked aerogel matrices is considered. The interaction in the resulting metal/ligand systems is unique for each pair, which is confirmed by the detection of broad bands with individual positions in the luminescence excitation spectra of photoactive aerogels.

17.
Polymers (Basel) ; 14(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297887

RESUMO

Biodegradable polyester/hydroxyapatite microparticles are widely proposed as microcarriers for drug/cell delivery or scaffolds for bone tissue regeneration. The current research implements the surfactant-free approach for the fabrication of polyester-based microparticles filled with hydroxyapatite nanoparticles (nHA) via the oil/water Pickering emulsion solvent evaporation technique for the first time, to the best of our knowledge. The process of polyester microparticle fabrication using nHA for the oil/water interface stabilization was studied as a function of phase used for nHA addition, which allows the preparation of a range of microparticles either filled with nHA or having it as a shell over the polymeric core. The effect of processing conditions (polymer nature, polymer/nHA ratio, ultrasound treatment) on particles' total yield, size distribution, surface and volume morphology, and chemical structure was analyzed using SEM, EDX, Raman spectroscopy, and mapping. Addition of nHA either within the aqueous or oil phase allowed the effective stabilization of the oil/water interface without additional molecular surfactants, giving rise to hybrid microparticles in which total yield, size distribution, and surface morphology depended on all studied processing conditions. Preliminary ultrasound treatment of any phase before the emulsification process led to a complex effect but did not affect the homogeneity of nHA distribution within the polymeric core of the hybrid microparticles.

18.
Stem Cell Res Ther ; 13(1): 317, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842689

RESUMO

One of the severe complications occurring because of the patient's intubation is tracheal stenosis. Its incidence has significantly risen because of the COVID-19 pandemic and tends only to increase. Here, we propose an alternative to the donor trachea and synthetic prostheses-the tracheal equivalent. To form it, we applied the donor trachea samples, which were decellularized, cross-linked, and treated with laser to make wells on their surface, and inoculated them with human gingiva-derived mesenchymal stromal cells. The fabricated construct was assessed in vivo using nude (immunodeficient), immunosuppressed, and normal mice and rabbits. In comparison with the matrix ones, the tracheal equivalent samples demonstrated the thinning of the capsule, the significant vessel ingrowth into surrounding tissues, and the increase in the submucosa resorption. The developed construct was shown to be highly biocompatible and efficient in trachea restoration. These results can facilitate its clinical translation and be a base to design clinical trials.


Assuntos
COVID-19 , Engenharia Tecidual , Animais , Humanos , Lasers , Camundongos , Pandemias , Coelhos , Engenharia Tecidual/métodos , Alicerces Teciduais , Traqueia
19.
Polymers (Basel) ; 13(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34685284

RESUMO

New results are presented for laser formation-in particular, the "drawing" of microstructures in polymer films using continuous-wave (CW) laser radiation λ = 405 nm with an intensity of 0.8-3.7 kW/cm2. The laser drawing was carried out in the polymer system poly-2,2'-p-oxydiphenylene-5,5'-bis-benzimidazole (OPBI), which consists of two phases: a solid polymer matrix with formic acid (HCOOH) dissolved in it. The formation of microstructures, including the stage of foaming, was carried out in three media: air, water and a supercritical carbon dioxide medium containing dissolved molecules of the silver precursor Ag(hfac)COD. The morphological features of foam-like track structures formed in the near-surface layer of the polymer films by laser "drawing" are considered. A model of processes is presented that explains the appearance of periodic structures. The key point of this model is that it considers the participation of the photoinduced mechanism of explosive boiling of formic acid molecules dissolved in the polymer matrix. Using Raman spectroscopy, spectra were obtained and interpreted, which relate to different stages in the formation of microstructures in OPBI films. The effects associated with the peculiarities of luminescent microstructures on the surfaces of glasses in close contact with polymer films during laser "painting" in the air have been studied.

20.
Nanomaterials (Basel) ; 11(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208329

RESUMO

Two approaches are proposed for the synthesis of bimetallic Au/Ag nanoparticles, using the pulsed laser ablation of a target consisting of gold and silver plates in a medium of supercritical carbon dioxide. The differences between the two approaches related to the field of "green chemistry" are in the use of different geometric configurations and different laser sources when carrying out the experiments. In the first configuration, the Ag and Au targets are placed side-by-side vertically on the side wall of a high-pressure reactor and the ablation of the target plates occurs alternately with a stationary "wide" horizontal beam with a laser pulse repetition rate of 50 Hz. In the second configuration, the targets are placed horizontally at the bottom of a reactor and the ablation of their parts is carried out by scanning from above with a vertical "narrow" laser beam with a pulse repetition rate of 60 kHz. The possibility of obtaining Ag/Au alloy nanoparticles is demonstrated using the first configuration, while the possibility of obtaining "core-shell" bimetallic Au/Ag nanoparticles with a gold core and a silver shell is demonstrated using the second configuration. A simple model is proposed to explain the obtained results.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa