Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(2): 372-387.e14, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32610084

RESUMO

Acute psychological stress has long been known to decrease host fitness to inflammation in a wide variety of diseases, but how this occurs is incompletely understood. Using mouse models, we show that interleukin-6 (IL-6) is the dominant cytokine inducible upon acute stress alone. Stress-inducible IL-6 is produced from brown adipocytes in a beta-3-adrenergic-receptor-dependent fashion. During stress, endocrine IL-6 is the required instructive signal for mediating hyperglycemia through hepatic gluconeogenesis, which is necessary for anticipating and fueling "fight or flight" responses. This adaptation comes at the cost of enhancing mortality to a subsequent inflammatory challenge. These findings provide a mechanistic understanding of the ontogeny and adaptive purpose of IL-6 as a bona fide stress hormone coordinating systemic immunometabolic reprogramming. This brain-brown fat-liver axis might provide new insights into brown adipose tissue as a stress-responsive endocrine organ and mechanistic insight into targeting this axis in the treatment of inflammatory and neuropsychiatric diseases.


Assuntos
Tecido Adiposo Marrom/metabolismo , Interleucina-6/metabolismo , Estresse Psicológico , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Encéfalo/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Gluconeogênese , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Interleucina-6/sangue , Interleucina-6/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Adrenérgicos beta 3/metabolismo , Receptores de Interleucina-6/metabolismo , Proteína Desacopladora 1/deficiência , Proteína Desacopladora 1/genética
2.
Cell ; 175(4): 1088-1104.e23, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318146

RESUMO

Despite the known causality of copy-number variations (CNVs) to human neurodevelopmental disorders, the mechanisms behind each gene's contribution to the constellation of neural phenotypes remain elusive. Here, we investigated the 7q11.23 CNV, whose hemideletion causes Williams syndrome (WS), and uncovered that mitochondrial dysfunction participates in WS pathogenesis. Dysfunction is facilitated in part by the 7q11.23 protein DNAJC30, which interacts with mitochondrial ATP-synthase machinery. Removal of Dnajc30 in mice resulted in hypofunctional mitochondria, diminished morphological features of neocortical pyramidal neurons, and altered behaviors reminiscent of WS. The mitochondrial features are consistent with our observations of decreased integrity of oxidative phosphorylation supercomplexes and ATP-synthase dimers in WS. Thus, we identify DNAJC30 as an auxiliary component of ATP-synthase machinery and reveal mitochondrial maladies as underlying certain defects in brain development and function associated with WS.


Assuntos
Complexos de ATP Sintetase/metabolismo , Encéfalo/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Mitocôndrias/metabolismo , Síndrome de Williams/genética , Animais , Encéfalo/crescimento & desenvolvimento , Células Cultivadas , Feminino , Células HEK293 , Proteínas de Choque Térmico HSP40/genética , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa
4.
Front Neuroendocrinol ; 73: 101119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184208

RESUMO

Rates of alcohol use disorder (AUD) are increasing in men and women and there are high rates of concurrent posttraumatic stress disorder (PTSD) and AUD. AUD and PTSD synergistically increase symptomatology and negatively affect treatment outcomes; however, there are very limited pharmacological treatments for PTSD/AUD. Neurosteroids have been implicated in the underlying neurobiological mechanisms of both PTSD and AUD and may be a target for treatment development. This review details the past ten years of research on pregnenolone, progesterone, allopregnanolone, pregnanolone, estradiol, testosterone and dehydroepiandrosterone/dehydroepiandrosterone-sulfate (DHEA/DHEA-S) in the context of PTSD and AUD, including examination of trauma/alcohol-related variables, such as stress-reactivity. Emerging evidence that exogenous pregnenolone, progesterone, and allopregnanolone may be promising, novel interventions is also discussed. Specific emphasis is placed on examining the application of sex as a biological variable in this body of literature, given that women are more susceptible to both PTSD diagnoses and stress-related alcohol consumption.


Assuntos
Alcoolismo , Neuroesteroides , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Neuroesteroides/metabolismo , Alcoolismo/metabolismo , Alcoolismo/tratamento farmacológico , Animais , Feminino , Masculino
5.
J Neurochem ; 167(1): 3-15, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37621094

RESUMO

The neurotransmitter acetylcholine (ACh) plays a central role in the regulation of multiple cognitive and behavioral processes, including attention, learning, memory, motivation, anxiety, mood, appetite, and reward. As a result, understanding ACh dynamics in the brain is essential for elucidating the neural mechanisms underlying these processes. In vivo measurements of ACh in the brain have been challenging because of the low concentrations and rapid turnover of this neurotransmitter. Here, we review a number of techniques that have been developed to measure ACh levels in the brain in vivo. We follow this with a deeper focus on use of genetically encoded fluorescent sensors coupled with fiber photometry, an accessible technique that can be used to monitor neurotransmitter release with high temporal resolution and specificity. We conclude with a discussion of methods for analyzing fiber photometry data and their respective advantages and disadvantages. The development of genetically encoded fluorescent ACh sensors is revolutionizing the field of cholinergic signaling, allowing temporally precise measurement of ACh release in awake, behaving animals. Use of these sensors has already begun to contribute to a mechanistic understanding of cholinergic modulation of complex behaviors.


Assuntos
Acetilcolina , Encéfalo , Animais , Encéfalo/fisiologia , Aprendizagem/fisiologia , Neurotransmissores , Colinérgicos , Microdiálise
6.
Mol Psychiatry ; 27(3): 1829-1838, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997190

RESUMO

Acetylcholine (ACh) levels are elevated in actively depressed subjects. Conversely, antagonism of either nicotinic or muscarinic ACh receptors can have antidepressant effects in humans and decrease stress-relevant behaviors in rodents. Consistent with a role for ACh in mediating maladaptive responses to stress, brain ACh levels increase in response to stressful challenges, whereas systemically blocking acetylcholinesterase (AChE, the primary ACh degradative enzyme) elicits depression-like symptoms in human subjects, and selectively blocking AChE in the hippocampus increases relevant behaviors in rodents. We used an ACh sensor to characterize stress-evoked ACh release, then used chemogenetic, optogenetic and pharmacological approaches to determine whether cholinergic inputs from the medial septum/diagonal bands of Broca (MSDBB) or ChAT-positive neurons intrinsic to the hippocampus mediate stress-relevant behaviors in mice. Chemogenetic inhibition or activation of MSDBB cholinergic neurons did not result in significant behavioral effects, while inhibition attenuated the behavioral effects of physostigmine. In contrast, optogenetic stimulation of septohippocampal terminals or selective chemogenetic activation of ChAT-positive inputs to hippocampus increased stress-related behaviors. Finally, stimulation of sparse ChAT-positive hippocampal neurons increased stress-related behaviors in one ChAT-Cre line, which were attenuated by local infusion of cholinergic antagonists. These studies suggest that ACh signaling results in maladaptive behavioral responses to stress if the balance of signaling is shifted toward increased hippocampal engagement.


Assuntos
Acetilcolina , Acetilcolinesterase , Acetilcolinesterase/farmacologia , Animais , Colina O-Acetiltransferase/metabolismo , Colina O-Acetiltransferase/farmacologia , Colinérgicos/farmacologia , Neurônios Colinérgicos/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos
7.
Mol Psychiatry ; 27(12): 4918-4927, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36050437

RESUMO

The balance between excitatory and inhibitory (E/I) signaling is important for maintaining homeostatic function in the brain. Indeed, dysregulation of inhibitory GABA interneurons in the amygdala has been implicated in human mood disorders. We hypothesized that acetylcholine (ACh) signaling in the basolateral amygdala (BLA) might alter E/I balance resulting in changes in stress-sensitive behaviors. We therefore measured ACh release as well as activity of calmodulin-dependent protein kinase II (CAMKII)-, parvalbumin (PV)-, somatostatin (SOM)- and vasoactive intestinal protein (VIP)-expressing neurons in the BLA of awake, behaving male mice. ACh levels and activity of both excitatory and inhibitory BLA neurons increased when animals were actively coping, and decreased during passive coping, in the light-dark box, tail suspension and social defeat. Changes in neuronal activity preceded behavioral state transitions, suggesting that BLA activity may drive the shift in coping strategy. In contrast to exposure to escapable stressors, prolonging ACh signaling with a cholinesterase antagonist changed the balance of activity among BLA cell types, significantly increasing activity of VIP neurons and decreasing activity of SOM cells, with little effect on CaMKII or PV neurons. Knockdown of α7 or ß2-containing nAChR subtypes in PV and SOM, but not CaMKII or VIP, BLA neurons altered behavioral responses to stressors, suggesting that ACh signaling through nAChRs on GABA neuron subtypes contributes to stress-induced changes in behavior. These studies show that ACh modulates the GABAergic signaling network in the BLA, shifting the balance between SOM, PV, VIP and CaMKII neurons, which are normally activated coordinately during active coping in response to stress. Thus, prolonging ACh signaling, as occurs in response to chronic stress, may contribute to maladaptive behaviors by shifting the balance of inhibitory signaling in the BLA.


Assuntos
Acetilcolina , Complexo Nuclear Basolateral da Amígdala , Neurônios GABAérgicos , Estresse Psicológico , Animais , Masculino , Camundongos , Acetilcolina/metabolismo , Tonsila do Cerebelo/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Estresse Psicológico/metabolismo
8.
Pharmacol Res ; 191: 106745, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37011774

RESUMO

Human epidemiological studies have identified links between nicotine intake and stress disorders, including anxiety, depression and PTSD. Here we review the clinical evidence for activation and desensitization of nicotinic acetylcholine receptors (nAChRs) relevant to affective disorders. We go on to describe clinical and preclinical pharmacological studies suggesting that nAChR function may be involved in the etiology of anxiety and depressive disorders, may be relevant targets for medication development, and may contribute to the antidepressant efficacy of non-nicotinic therapeutics. We then review what is known about nAChR function in a subset of limbic system areas (amygdala, hippocampus and prefrontal cortex), and how this contributes to stress-relevant behaviors in preclinical models that may be relevant to human affective disorders. Taken together, the preclinical and clinical literature point to a clear role for ACh signaling through nAChRs in regulation of behavioral responses to stress. Disruption of nAChR homeostasis is likely to contribute to the psychopathology observed in anxiety and depressive disorders. Targeting specific nAChRs may therefore be a strategy for medication development to treat these disorders or to augment the efficacy of current therapeutics.


Assuntos
Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Nicotina/farmacologia , Tonsila do Cerebelo/metabolismo , Córtex Pré-Frontal/metabolismo , Ansiedade
9.
Eur J Neurosci ; 53(1): 114-125, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821620

RESUMO

Optimal acetylcholine (ACh) signaling is important for sustained attention and facilitates learning and memory. At the same time, human and animal studies have demonstrated increased levels of ACh in the brain during depressive episodes and increased symptoms of anxiety, depression, and reactivity to stress when ACh breakdown is impaired. While it is possible that the neuromodulatory roles of ACh in cognitive and affective processes are distinct, one possibility is that homeostatic levels of ACh signaling are necessary for appropriate learning, but overly high levels of cholinergic signaling promote encoding of stressful events, leading to the negative encoding bias that is a core symptom of depression. In this review, we outline this hypothesis and suggest potential neural pathways and underlying mechanisms that may support a role for ACh signaling in negative encoding bias.


Assuntos
Acetilcolina , Memória , Animais , Encéfalo , Humanos , Aprendizagem , Vias Neurais
10.
Cogn Affect Behav Neurosci ; 20(6): 1173-1183, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32794101

RESUMO

Seasonal variations in environmental light influence switches between moods in seasonal affective disorder (SAD) and bipolar disorder (BD), with depression arising during short active (SA) winter periods. Light-induced changes in behavior are also seen in healthy animals and are intensified in mice with reduced dopamine transporter expression. Specifically, decreasing the nocturnal active period (SA) of mice increases punishment perseveration and forced swim test (FST) immobility. Elevating acetylcholine with the acetylcholinesterase inhibitor physostigmine induces depression symptoms in people and increases FST immobility in mice. We used SA photoperiods and physostigmine to elevate acetylcholine prior to testing in a probabilistic learning task and the FST, including reversing subsequent deficits with nicotinic and scopolamine antagonists and targeted hippocampal adeno-associated viral administration. We confirmed that physostigmine also increases punishment sensitivity in a probabilistic learning paradigm. In addition, muscarinic and nicotinic receptor blockade attenuated both physostigmine-induced and SA-induced phenotypes. Finally, viral-mediated hippocampal expression of human AChE used to lower ACh levels blocked SA-induced elevation of FST immobility. These results indicate that increased hippocampal acetylcholine neurotransmission is necessary for the expression of SA exposure-induced behaviors. Furthermore, these studies support the potential for cholinergic treatments in depression. Taken together, these results provide evidence for hippocampal cholinergic mechanisms in contributing to seasonally depressed affective states induced by short day lengths.


Assuntos
Acetilcolina , Fotoperíodo , Acetilcolinesterase , Animais , Hipocampo , Camundongos , Fisostigmina/farmacologia
11.
Eur J Neurosci ; 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29791746

RESUMO

Nicotine, acting through nicotinic acetylcholine receptors (nAChRs), increases the firing rate of both orexigenic agouti-related peptide (AgRP) and anorexigenic pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), yet nicotine and other nAChR agonists decrease food intake in mice. Viral-mediated knockdown of the ß4 nAChR subunit in all neuronal cell types in the ARC prevents the nicotinic agonist cytisine from decreasing food intake, but it is not known whether the ß4 subunit is selectively expressed in anorexigenic neurons or how other nAChR subtypes are distributed in this nucleus. Using translating ribosome affinity purification (TRAP) on ARC tissue from mice with ribosomes tagged in either AgRP or POMC cells, we examined nAChR subunit mRNA levels using real-time PCR. Both AgRP and POMC cells express a comparable panel of nAChR subunits with differences in α7 mRNA levels and a trend for difference in α4 levels, but no differences in ß4 expression. Immunoprecipitation of assembled nAChRs revealed that the ß4 subunit forms assembled channels with α3, ß2 and α4, but not other subunits found in the ARC. Finally, using cell type-selective, virally delivered small hairpin RNAs targeting either the ß4 or α7 subunit, we examined the contribution of each subunit in either AgRP or POMC cells to the behavioural response to nicotine, refining the understanding of nicotinic regulation of this feeding circuit. These experiments identify a more complex set of nAChRs expressed in ARC than in other hypothalamic regions. Thus, the ARC appears to be a particular target of nicotinic modulation.

12.
Proc Natl Acad Sci U S A ; 110(9): 3573-8, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401542

RESUMO

Symptoms of depression can be induced in humans through blockade of acetylcholinesterase (AChE) whereas antidepressant-like effects can be produced in animal models and some clinical trials by limiting activity of acetylcholine (ACh) receptors. Thus, ACh signaling could contribute to the etiology of mood regulation. To test this hypothesis, we administered the AChE inhibitor physostigmine to mice and demonstrated an increase in anxiety- and depression-like behaviors that was reversed by administration of nicotinic or muscarinic antagonists. The behavioral effects of physostigmine were also reversed by administration of the selective serotonin reuptake inhibitor fluoxetine. Administration of fluoxetine also increased AChE activity throughout the brain, with the greatest change in the hippocampus. To determine whether cholinergic signaling in the hippocampus could contribute to the systemic effects of cholinergic drugs, we infused physostigmine or virally delivered shRNAs targeting AChE into the hippocampus. Both pharmacological and molecular genetic decreases in hippocampal AChE activity increased anxiety- and depression-like behaviors and decreased resilience to repeated stress in a social defeat paradigm. The behavioral changes due to shRNA-mediated knockdown of AChE were rescued by coinfusion of an shRNA-resistant AChE transgene into the hippocampus and reversed by systemic administration of fluoxetine. These data demonstrate that ACh signaling in the hippocampus promotes behaviors related to anxiety and depression. The sensitivity of these effects to fluoxetine suggests that shRNA-mediated knockdown of hippocampal AChE represents a model for anxiety- and depression-like phenotypes. Furthermore, abnormalities in the cholinergic system may be critical for the etiology of mood disorders and could represent an endophenotype of depression.


Assuntos
Ansiedade/psicologia , Neurônios Colinérgicos/metabolismo , Depressão/psicologia , Hipocampo/metabolismo , Resiliência Psicológica , Transdução de Sinais , Estresse Psicológico/metabolismo , Acetilcolinesterase/metabolismo , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ansiedade/complicações , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Antagonistas Colinérgicos/farmacologia , Antagonistas Colinérgicos/uso terapêutico , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/patologia , Dependovirus/metabolismo , Depressão/complicações , Depressão/tratamento farmacológico , Depressão/metabolismo , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Técnicas de Silenciamento de Genes , Elevação dos Membros Posteriores , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Fisostigmina , RNA Interferente Pequeno/metabolismo , Receptores Colinérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Fatores de Tempo
13.
Am J Med Genet B Neuropsychiatr Genet ; 171B(3): 427-36, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26888158

RESUMO

Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors.


Assuntos
Agressão/fisiologia , Comportamento Animal , Animais , Modelos Animais de Doenças , Redes Reguladoras de Genes , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Estresse Psicológico/genética , Regulação para Cima/genética
14.
BMC Genomics ; 16: 262, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25879669

RESUMO

BACKGROUND: BALB/cJ is a strain susceptible to stress and extremely susceptible to a defective hedonic impact in response to chronic stressors. The strain offers much promise as an animal model for the study of stress related disorders. We present a comparative hippocampal gene expression study on the effects of unpredictable chronic mild stress on BALB/cJ and C57BL/6J mice. Affymetrix MOE 430 was used to measure hippocampal gene expression from 16 animals of two different strains (BALB/cJ and C57BL/6J) of both sexes and subjected to either unpredictable chronic mild stress (UCMS) or no stress. Differences were statistically evaluated through supervised and unsupervised linear modelling and using Weighted Gene Coexpression Network Analysis (WGCNA). In order to gain further understanding into mechanisms related to stress response, we cross-validated our results with a parallel study from the GENDEP project using WGCNA in a meta-analysis design. RESULTS: The effects of UCMS are visible through Principal Component Analysis which highlights the stress sensitivity of the BALB/cJ strain. A number of genes and gene networks related to stress response were uncovered including the Creb1 gene. WGCNA and pathway analysis revealed a gene network centered on Nfkb1. Results from the meta-analysis revealed a highly significant gene pathway centred on the Ubiquitin C (Ubc) gene. All pathways uncovered are associated with inflammation and immune response. CONCLUSIONS: The study investigated the molecular mechanisms underlying the response to adverse environment in an animal model using a GxE design. Stress-related differences were visible at the genomic level through PCA analysis highlighting the high sensitivity of BALB/cJ animals to environmental stressors. Several candidate genes and gene networks reported are associated with inflammation and neurogenesis and could serve to inform candidate gene selection in human studies and provide additional insight into the pathology of Major Depressive Disorder.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Hipocampo/metabolismo , Estresse Psicológico/genética , Animais , Encéfalo/fisiopatologia , Transtorno Depressivo Maior/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipocampo/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Biossíntese de Proteínas , Especificidade da Espécie
15.
Nicotine Tob Res ; 17(4): 486-95, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25762760

RESUMO

INTRODUCTION: Tobacco use remains the leading cause of morbidity and mortality for both women and men in the United States, and women often experience poorer smoking cessation outcomes than men. Preliminary evidence suggests there are sex differences in medication effectiveness for smoking cessation. However, current medications do not take into account gender-sensitive treatment development and efficacy, underscoring the importance of this underdeveloped area of research. METHODS: We reviewed preclinical and clinical evidence for gender differences in the inability to quit smoking by examining (a) the effect of increased negative affect and stress reactivity on smoking outcomes in women and (b) smoking for nicotine reinforcement in men. We also reviewed the current literature targeting the noradrenergic system as a novel gender-sensitive treatment strategy for tobacco dependence. RESULTS: We hypothesize that noradrenergic agents that normalize noradrenergic activity may differentially attenuate stress reactivity in women and nicotine-related reinforcement in men, indicating that targeting the noradrenergic system for smoking cessation may be effective for both genders, with benefits operating through sex-specific mechanisms. CONCLUSIONS: Converging lines of preclinical and clinical evidence suggest that gender-sensitive approaches to medication development for smoking cessation are a critical next step for addressing low quit rates and exacerbated health risks among women. Evidence reviewed indicates that smoking activates different brain systems modulated by noradrenergic activity in women versus men, and noradrenergic compounds may preferentially target these gender-sensitive systems.


Assuntos
Identidade de Gênero , Nicotina/uso terapêutico , Receptores Androgênicos , Abandono do Hábito de Fumar/métodos , Prevenção do Hábito de Fumar , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Feminino , Humanos , Masculino
16.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895217

RESUMO

Rates of alcohol use disorder (AUD) have escalated in recent years, with a particular increase among women. Women are more susceptible to stress-induced alcohol drinking, and preclinical data suggest that stress can increase alcohol intake in female rodents; however, a comprehensive understanding of sex-specific neurobiological substrates underlying this phenomenon is still emerging. Microglia, the resident macrophages of the brain, are essential for reshaping neuronal processes, and microglial activity contributes to overall neuronal plasticity. We investigated microglial dynamics and morphology in limbic brain structures of male and female mice following exposure to stress, alcohol or both challenges. In a modified paradigm of intermittent binge drinking (repeated "drinking in the dark"), we determined that female, but not male, mice increased their alcohol consumption after exposure to a physical stressor and re-exposure trials in the stress-paired context. Ethanol (EtOH) drinking and stress altered a number of microglial parameters, including overall number, in subregions of the amygdala and hippocampus, with effects that were somewhat more pronounced in female mice. We used the CSF1R antagonist PLX3397 to deplete microglia in female mice to determine whether microglia contribute to stress-induced escalation of EtOH intake. We observed that microglial depletion attenuated stress-induced alcohol intake with no effect in the unstressed group. These findings suggest that microglial activity can contribute to alcohol intake under stressful conditions, and highlight the importance of evaluating sex-specific mechanisms that could result in tailored interventions for AUD in women.

17.
J Physiol ; 591(7): 1951-66, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23318871

RESUMO

Hypocretin (orexin), a neuropeptide synthesized exclusively in the perifornical/lateral hypothalamus, is critical for drug seeking and relapse, but it is not clear how the circuitry centred on hypocretin-producing neurons (hypocretin neurons) is modified by drugs of abuse and how changes in this circuit might alter behaviours related to drug addiction. In this study, we show that repeated, but not single, in vivo cocaine administration leads to a long-lasting, experience-dependent potentiation of glutamatergic synapses on hypocretin neurons in mice following a cocaine-conditioned place preference (CPP) protocol. The synaptic potentiation occurs postsynaptically and probably involves up-regulation of AMPA-type glutamate receptors on hypocretin neurons. Phosphorylation of cAMP response element-binding protein (CREB) is also significantly increased in hypocretin neurons in cocaine-treated animals, suggesting that CREB-mediated pathways may contribute to synaptic potentiation in these cells. Furthermore, the potentiation of synaptic efficacy in hypocretin neurons persists during cocaine withdrawal, but reverses to baseline levels after prolonged abstinence. Finally, the induction of long-term potentiation (LTP) triggered by a high-frequency stimulation is facilitated in hypocretin neurons in cocaine-treated mice, suggesting that long-lasting changes in synapses onto hypocretin neurons would probably be further potentiated by other stimuli (such as concurrent environmental cues) paired with the drug. In summary, we show here that hypocretin neurons undergo experience-dependent synaptic potentiation that is distinct from that reported in other reward systems, such as the ventral tegmental area, following exposure to cocaine. These findings support the idea that the hypocretin system is important for behavioural changes associated with cocaine administration in animals and humans.


Assuntos
Cocaína/administração & dosagem , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/fisiologia , Sinapses/efeitos dos fármacos , Animais , Condicionamento Psicológico , Potenciais Pós-Sinápticos Excitadores , Hipotálamo/fisiologia , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/fisiologia , Orexinas , Sinapses/fisiologia
18.
J Pharmacol Exp Ther ; 347(2): 424-37, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23959137

RESUMO

Partial agonist therapies for the treatment of nicotine addiction and dependence depend on both agonistic and antagonistic effects of the ligands, and side effects associated with other nAChRs greatly limit the efficacy of nicotinic partial agonists. We evaluated the in vitro pharmacological properties of four partial agonists, two current smoking cessation drugs, varenicline and cytisine, and two novel bispidine compounds, BPC and BMSP, by using defined nAChR subtypes expressed in Xenopus laevis oocytes and human embryonic kidney 293 cells. Similar to varenicline and cytisine, BPC and BMSP are partial agonists of α4ß2 nAChRs, although BMSP produced very little activation of these receptors. Unlike varenicline and cytisine, BPC and BMSP showed desired low activity. BPC produced mecamylamine-sensitive steady-state activation of α4* receptors that was not evident with BMSP. We evaluated the modulation of α4*- and α7-mediated responses in rat lateral geniculate nucleus (LGN) neurons and hippocampal stratum radiatum (SR) interneurons, respectively. The LGN neurons were sensitive to a very low concentration of varenicline, and the SR interneuron responses were also sensitive to varenicline at a submicromolar concentration. Although 300 nM BPC strongly inhibited the ACh-evoked responses of LGN neurons, it did not inhibit the α7 currents of SR interneurons. Similar results were observed with 300 nM BMSP. Additionally, the bispidine compounds were efficacious in the mouse tail suspension test, demonstrating that they affect receptors in the brain when delivered systemically. Our data indicate that BPC and BMSP are promising α4ß2* partial agonists for pharmacotherapeutics.


Assuntos
Alcaloides/farmacologia , Benzazepinas/farmacologia , Encéfalo/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Agonistas Nicotínicos/farmacologia , Quinoxalinas/farmacologia , Receptores Nicotínicos/metabolismo , Alcaloides/química , Animais , Azocinas/química , Azocinas/farmacologia , Comportamento Animal/efeitos dos fármacos , Benzazepinas/química , Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/química , Relação Dose-Resposta a Droga , Agonismo Parcial de Drogas , Células HEK293 , Humanos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Estrutura Molecular , Agonistas Nicotínicos/química , Oócitos/metabolismo , Técnicas de Patch-Clamp , Quinolizinas/química , Quinolizinas/farmacologia , Quinoxalinas/química , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/genética , Tabagismo/tratamento farmacológico , Tabagismo/metabolismo , Tabagismo/psicologia , Vareniclina , Xenopus laevis
19.
J Womens Health (Larchmt) ; 32(8): 852-857, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37585509

RESUMO

There is a critical need for interdisciplinary and translational scientists to apply sex as a biological variable (SABV) research to address knowledge gaps in the health of women. In 2018, the Office of Research on Women's Health (ORWH) partnered with several National Institute of Health (NIH) Institutes and Centers to expand the Specialized Centers of Research (SCOR) Excellence (SCORE) Programs (together referred to as SCOR/E) with an important feature-the Career Enhancement Core (CEC). The SCORE CEC mentors early career investigators to become the next generation of biomedical and behavioral researchers focused on SABV and women's health. In this article, we outline our approach at the Yale University SCORE to support early career trajectories through the provision of salary support, educational curricula, translational mentorship, pilot project funding, and professional development. Using the Yale-SCOR/E CEC Programs as instructional models, we highlight critical measures of academic success, namely grant funding and publications, among early career investigators. At Yale University, 12 pilot projects funded by the SCOR/E Programs resulted in 14 extramural grants, amounting to an $80 return on every $1 invested in "seed" funding. So far, our SCOR/E Programs have resulted in 129 publications, 83% of which were first-authored by trainees, and 100% of trainees continued research careers with an emphasis on SABV. Finally, we provide recommendations on how biomedical scientists can apply SABV in their studies of major medical conditions in an interdisciplinary and integrative way.


Assuntos
Pesquisa Biomédica , Saúde da Mulher , Humanos , Feminino , Estados Unidos , Projetos Piloto , Currículo , Mentores , Organização do Financiamento , National Institutes of Health (U.S.)
20.
bioRxiv ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37790481

RESUMO

Increased brain levels of acetylcholine (ACh) are observed in subsets of patients with depression and increasing ACh levels chronically can precipitate stress-related behaviors in humans and animals. Conversely, optimal ACh levels are required for cognition and memory. We hypothesize that ACh signaling is important for encoding both appetitive and stress-relevant memories, but that excessive increases in ACh result in a negative encoding bias in which memory formation of a stressful event is aberrantly strengthened, potentially contributing to the excessive focus on negative experience that could lead to depressive symptoms. The medial prefrontal cortex (mPFC) is critical to control the limbic system to filter exteroceptive cues and stress-related circuits. We therefore evaluated the role of ACh signaling in the mPFC in a learned helplessness task in which mice were exposed to repeated inescapable stressors followed by an active avoidance task. Using fiber photometry with a genetically-encoded ACh sensor, we found that ACh levels in the mPFC during exposure to inescapable stressors were positively correlated with later escape deficits in an active avoidance test in males, but not females. Consistent with these measurements, we found that both pharmacologically- and chemogenetically-induced increases in mPFC ACh levels resulted in escape deficits in both male and female mice, whereas chemogenetic inhibition of ACh neurons projecting to the mPFC improved escape performance in males, but impaired escape performance in females. These results highlight the adaptive role of ACh release in stress response, but also support the idea that sustained elevated ACh levels contribute to maladaptive behaviors. Furthermore, mPFC ACh signaling may contribute to depressive symptomology differentially in males and females.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa