Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446405

RESUMO

One of the manifestations of renal aging is podocyte dysfunction and loss, which are associated with proteinuria and glomerulosclerosis. Studies show a male bias in glomerular dysfunction and chronic kidney diseases, and the underlying mechanisms remain obscure. Recent studies demonstrate the role of an age-associated increase in arginase-II (Arg-II) in proximal tubules of both male and female mice. However, it is unclear whether Arg-II is also involved in aging glomeruli. The current study investigates the role of the sex-specific elevation of Arg-II in podocytes in age-associated increased albuminuria. Young (3-4 months) and old (20-22 months) male and female mice of wt and arginase-II knockout (arg-ii-/-) were used. Albuminuria was employed as a readout of glomerular function. Cellular localization and expression of Arg-II in glomeruli were analyzed using an immunofluorescence confocal microscope. A more pronounced age-associated increase in albuminuria was found in male than in female mice. An age-associated induction of Arg-II in glomeruli and podocytes (as demonstrated by co-localization of Arg-II with the podocyte marker synaptopodin) was also observed in males but not in females. Ablation of the arg-ii gene in mice significantly reduces age-associated albuminuria in males. Also, age-associated decreases in podocyte density and glomerulus hypertrophy are significantly prevented in male arg-ii-/- but not in female mice. However, age-associated glomerulosclerosis is not affected by arg-ii ablation in both sexes. These results demonstrate a role of Arg-II in sex-specific podocyte injury in aging. They may explain the sex-specific differences in the development of renal disease in humans during aging.


Assuntos
Podócitos , Animais , Feminino , Masculino , Camundongos , Albuminúria/metabolismo , Arginase/genética , Arginase/metabolismo , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835007

RESUMO

Hypoxia is an important risk for renal disease. The mitochondrial enzyme arginase-II (Arg-II) is expressed and/or induced by hypoxia in proximal tubular epithelial cells (PTECs) and in podocytes, leading to cellular damage. Because PTECs are vulnerable to hypoxia and located in proximity to podocytes, we examined the role of Arg-II in the crosstalk of PTECs under hypoxic conditions with podocytes. A human PTEC cell line (HK2) and a human podocyte cell line (AB8/13) were cultured. Arg-ii gene was ablated by CRISPR/Case9 in both cell types. HK2 cells were exposed to normoxia (21% O2) or hypoxia (1% O2) for 48 h. Conditioned medium (CM) was collected and transferred to the podocytes. Podocyte injuries were then analyzed. Hypoxic (not normoxic) HK2-CM caused cytoskeletal derangement, cell apoptosis, and increased Arg-II levels in differentiated podocytes. These effects were absent when arg-ii in HK2 was ablated. The detrimental effects of the hypoxic HK2-CM were prevented by TGF-ß1 type-I receptor blocker SB431542. Indeed, TGF-ß1 levels in hypoxic HK2-CM (but not arg-ii-/--HK2-CM) were increased. Furthermore, the detrimental effects of TGF-ß1 on podocytes were prevented in arg-ii-/--podocytes. This study demonstrates crosstalk between PTECs and podocytes through the Arg-II-TGF-ß1 cascade, which may contribute to hypoxia-induced podocyte damage.


Assuntos
Túbulos Renais Proximais , Comunicação Parácrina , Podócitos , Humanos , Apoptose , Arginase/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Comunicação Parácrina/genética , Podócitos/metabolismo , Podócitos/patologia , Fator de Crescimento Transformador beta1/metabolismo
3.
J Cell Physiol ; 235(12): 9997-10011, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32468644

RESUMO

Elevated arginase type II (Arg-II) associates with higher grade tumors. Its function and underlying molecular mechanisms in melanoma remain elusive. In the present study, we observed a significantly higher frequency of Arg-II expression in melanoma of patients with metastasis than those without metastasis. Silencing Arg-II in two human melanoma cell lines slowed down the cell growth, while overexpression of native but not a catalytically inactive Arg-II promoted cell proliferation without affecting cell death. Treatment of cells with arginase inhibitor also reduced melanoma cell number, demonstrating that Arg-II promotes melanoma cell proliferation dependently of its enzymatic activity. However, results from silencing Arg-II or overexpressing native or the inactive Arg-II as well as treatment with arginase inhibitor showed that Arg-II promotes melanoma metastasis-related processes, such as melanoma cell migration and adhesion on endothelial cells, independently of its enzymatic activity. Moreover, the treatment of the cells with STAT3 inhibitor suppressed Arg-II-promoted melanoma cell migration and adhesion. Furthermore, catalase, but not superoxide dismutase, prevented STAT3 activation as well as increased melanoma cell migration and adhesion induced by overexpressing native or the inactive Arg-II. Taken together, our study uncovers both activity-dependent and independent mechanisms of Arg-II in promoting melanoma progression. While Arg-II enhances melanoma cell proliferation through polyamine dependently of its enzymatic activity, it promotes metastasis-related processes, that is, migration and adhesion onto endothelial cell, through mitochondrial H2 O2 -STAT3 pathway independently of the enzymatic activity. Suppressing Arg-II expression rather than inhibiting its enzymatic activity may, therefore, represent a novel strategy for the treatment of melanoma.


Assuntos
Arginase/genética , Inibidores Enzimáticos/farmacologia , Melanoma/tratamento farmacológico , Fator de Transcrição STAT3/genética , Animais , Arginase/antagonistas & inibidores , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Melanoma/genética , Transdução de Sinais/efeitos dos fármacos
4.
Pharmacology ; 105(9-10): 491-504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32454488

RESUMO

BACKGROUND: Adipose tissue inflammation occurs not only in obesity but also in aging and is mechanistically linked with age-associated diseases. Studies show that ablation of the l-arginine-metabolizing enzyme arginase-II (Arg-II) reduces adipose tissue inflammation and improves glucose tolerance in obesity. However, the role of Arg-II in aging adipose tissue inflammation is not clear. OBJECTIVE: This study investigated the role of Arg-II in age-associated adipose tissue inflammation. METHODS: Visceral adipose tissues of young (3-6 months) and old (20-24 months) wild-type (WT) and Arg-II-/- mice were investigated. Immunofluorescence confocal microscopy was performed for analysis of macrophage accumulation and cellular localization of arginase and cytokines; expression of arginase and cytokines was analyzed by qRT-PCR or immunoblotting or ELISA; activation of mitogen-activated protein kinases in adipose tissues was analyzed by immunoblotting; and arginase activity was measured by colorimetric determination of urea production. RESULTS: In the old WT mice, there is more macrophage accumulation in the visceral adipose tissues than in Arg-II knockout animals. An age-associated increase in arginase activity and Arg-II expression in adipose tissues of WT mice is observed. Arg-II knockout enhances Arg-I expression and activity, but inhibits interleukin (IL)-6 expression and secretion and reduces active p38mapk in aging adipose tissue macrophages and stromal cells. Treatment of aging adipose tissues of WT mice with a specific p38mapk inhibitor SB203580 reduces IL-6 secretion. CONCLUSIONS: Arg-II promotes IL-6 production in aging adipose tissues through p38mapk. The results suggest that targeting Arg-II or inhibiting p38mapk could be beneficial in reducing age-associated adipose tissue inflammation.


Assuntos
Tecido Adiposo/metabolismo , Envelhecimento/metabolismo , Arginase/metabolismo , Inflamação/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Tecido Adiposo/química , Animais , Arginase/genética , Feminino , Inflamação/complicações , Interleucina-6/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Obesidade/metabolismo
5.
FASEB J ; 32(10): 5520-5531, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29718707

RESUMO

Type-II l-arginine:ureahydrolase, arginase-II (Arg-II), is abundantly expressed in the kidney. The physiologic role played by Arg-II in the kidney remains unknown. Herein, we report that in mice that are deficient in Arg-II (Arg-II-/-), total and membrane-associated aquaporin-2 (AQP2) protein levels were significantly higher compared with wild-type (WT) controls. Water deprivation enhanced Arg-II expression, AQP2 levels, and membrane association in collecting ducts. Effects of water deprivation on AQP2 were stronger in Arg-II-/- mice than in WT mice. Accordingly, a decrease in urine volume and an increase in urine osmolality under water deprivation were more pronounced in Arg-II-/- mice than in WT mice, which correlated with a weaker increase in plasma osmolality in Arg-II-/- mice. There was no difference in vasopressin release under water deprivation conditions between either genotype of mice. Although total AQP2 and phosphorylated AQP2-S256 levels (mediated by PKA) in kidneys under water deprivation conditions were significantly higher in Arg-II-/- mice compared with WT animals, there is no difference in the ratio of AQP2-S256:AQP2. In cultured mouse collecting duct principal mCCDcl1 cells, expression of both Arg-II and AQP2 were enhanced by the vasopressin type 2 receptor agonist, desamino- d-arginine vasopressin (dDAVP). Silencing Arg-II enhanced the expression and membrane association of AQP2 by dDAVP without influencing cAMP levels. In conclusion, in vivo and in vitro experiments demonstrate that Arg-II negatively regulates AQP2 and the urine-concentrating capability in kidneys via a mechanism that is not associated with the modulation of the cAMP pathway.-Huang, J., Montani, J.-P., Verrey, F., Feraille, E., Ming, X.-F., Yang, Z. Arginase-II negatively regulates renal aquaporin-2 and water reabsorption.


Assuntos
Aquaporina 2/metabolismo , Arginase/metabolismo , Túbulos Renais Coletores/metabolismo , Água/metabolismo , Animais , Aquaporina 2/genética , Arginase/genética , Arginina Vasopressina/farmacologia , Linhagem Celular , AMP Cíclico/genética , AMP Cíclico/metabolismo , Túbulos Renais Coletores/citologia , Camundongos , Camundongos Knockout , Receptores de Vasopressinas/agonistas , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo
6.
Cardiovasc Diabetol ; 13: 113, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25034973

RESUMO

BACKGROUND: Endothelial nitric oxide synthase (eNOS)-uncoupling links obesity-associated insulin resistance and type-II diabetes to the increased incidence of cardiovascular disease. Studies have indicated that increased arginase is involved in eNOS-uncoupling through competing with the substrate L-arginine. Given that arginase-II (Arg-II) exerts some of its biological functions through crosstalk with signal transduction pathways, and that p38 mitogen-activated protein kinase (p38mapk) is involved in eNOS-uncoupling, we investigated here whether p38mapk is involved in Arg-II-mediated eNOS-uncoupling in a high fat diet (HFD)-induced obesity mouse model. METHODS: Obesity was induced in wild type (WT) and Arg-II-deficient (Arg-II(-/-)) mice on C57BL/6 J background by high-fat diet (HFD, 55% fat) for 14 weeks starting from age of 7 weeks. The entire aortas were isolated and subjected to 1) immunoblotting analysis of the protein level of eNOS, Arg-II and p38mapk activation; 2) arginase activity assay; 3) endothelium-dependent and independent vasomotor responses; 4) en face staining of superoxide anion and NO production with Dihydroethidium and 4,5-Diaminofluorescein Diacetate, respectively, to assess eNOS-uncoupling. To evaluate the role of p38mapk, isolated aortas were treated with p38mapk inhibitor SB203580 (10 µmol/L, 1 h) prior to the analysis. In addition, the role of p38mapk in Arg-II-induced eNOS-uncoupling was investigated in cultured human endothelial cells overexpressing Arg-II in the absence or presence of shRNA against p38mapk. RESULTS: HFD enhanced Arg-II expression/activity and p38mapk activity, which was associated with eNOS-uncoupling as revealed by decreased NO and enhanced L-NAME-inhibitable superoxide in aortas of WT obese mice. In accordance, WT obese mice revealed decreased endothelium-dependent relaxations to acetylcholine despite of higher eNOS protein level, whereas Arg-II(-/-) obese mice were protected from HFD-induced eNOS-uncoupling and endothelial dysfunction, which was associated with reduced p38mapk activation in aortas of the Arg-II(-/-) obese mice. Moreover, overexpression of Arg-II in human endothelial cells caused eNOS-uncoupling and augmented p38mapk activation. The Arg-II-induced eNOS-uncoupling was prevented by silencing p38mapk. Furthermore, pharmacological inhibition of p38mapk recouples eNOS in isolated aortas from WT obese mice. CONCLUSIONS: Taking together, we demonstrate here for the first time that Arg-II causes eNOS-uncoupling through activation of p38 mapk in HFD-induced obesity.


Assuntos
Arginase/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Arginase/genética , Arginina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Humanos , Camundongos , Óxido Nítrico/metabolismo , Fosforilação , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
Aging Dis ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38300641

RESUMO

Increased endothelial permeability plays an important role in blood-brain barrier (BBB) dysfunction and is implicated in neuronal injury in many diseased conditions. BBB disruption is primarily determined by dysfunction of endothelial cell-cell junctions. Deprivation of oxygen supply or hypoxia, a common feature of a variety of human diseases, is a major risk factor for BBB disruption. The molecular regulatory mechanisms of hypoxia-induced BBB dysfunction remain incompletely understood. The mitochondrial enzyme, arginase type II (Arg-II), has been shown to promote endothelial dysfunction. However, its role in hypoxia-induced BBB dysfunction has not been explored. In the C57BL/6J mouse model, hypoxia (8% O2, 24 hours) augments vascular Arg-II in the hippocampus, decreases cell-cell junction protein levels of Zonula occludens-1 (ZO-1), occludin, and CD31 in endothelial cells, increases BBB leakage in the brain in old mice (20 to 24 months) but not in young animals (3 to 6 months). These effects of hypoxia in aging are suppressed in arg-ii-/- mice. Moreover, the age-associated vulnerability of endothelial integrity to hypoxia is demonstrated in senescent human brain microvascular endothelial cell (hCMEC/D3) culture model. Further results in the cell culture model show that hypoxia augments Arg-II, decreases ZO-1 and occludin levels, and increases endothelial permeability, which is prevented by arg-ii gene silencing or by inhibition of mitochondrial reactive oxygen species (mtROS) production. Our study demonstrates an essential role of Arg-II in increased endothelial permeability and BBB dysfunction by promoting mtROS generation, resulting in decreased endothelial cell-cell junction protein levels under hypoxic conditions particularly in aging.

8.
Aging Cell ; 22(4): e13790, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36794355

RESUMO

Elevated arginases including type-I (Arg-I) and type-II isoenzyme (Arg-II) are reported to play a role in aging, age-associated organ inflammaging, and fibrosis. A role of arginase in pulmonary aging and underlying mechanisms are not explored. Our present study shows increased Arg-II levels in aging lung of female mice, which is detected in bronchial ciliated epithelium, club cells, alveolar type 2 (AT2) pneumocytes, and fibroblasts (but not vascular endothelial and smooth muscle cells). Similar cellular localization of Arg-II is also observed in human lung biopsies. The age-associated increase in lung fibrosis and inflammatory cytokines, including IL-1ß and TGF-ß1 that are highly expressed in bronchial epithelium, AT2 cells, and fibroblasts, are ameliorated in arg-ii deficient (arg-ii-/- ) mice. The effects of arg-ii-/- on lung inflammaging are weaker in male as compared to female animals. Conditioned medium (CM) from human Arg-II-positive bronchial and alveolar epithelial cells, but not that from arg-ii-/- cells, activates fibroblasts to produce various cytokines including TGF-ß1 and collagen, which is abolished by IL-1ß receptor antagonist or TGF-ß type I receptor blocker. Conversely, TGF-ß1 or IL-1ß also increases Arg-II expression. In the mouse models, we confirmed the age-associated increase in IL-1ß and TGF-ß1 in epithelial cells and activation of fibroblasts, which is inhibited in arg-ii-/- mice. Taken together, our study demonstrates a critical role of epithelial Arg-II in activation of pulmonary fibroblasts via paracrine release of IL-1ß and TGF-ß1, contributing to pulmonary inflammaging and fibrosis. The results provide a novel mechanistic insight in the role of Arg-II in pulmonary aging.


Assuntos
Arginase , Fator de Crescimento Transformador beta1 , Masculino , Feminino , Camundongos , Humanos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Arginase/genética , Arginase/metabolismo , Pulmão/patologia , Citocinas/metabolismo , Fibroblastos/metabolismo , Fibrose
9.
Circ J ; 76(8): 2015-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22572461

RESUMO

BACKGROUND: Hexosamine biosynthetic pathway (HBP) is implicated in increased plasminogen activator inhibitor-1 (PAI-1), and endothelial nitric oxide synthase (eNOS) dysfunction in diabetes. Glucosamine (GlcN) that directly activates HBP is a dietary supplement and is clinically used to treat osteoarthritis despite uncertain efficacy and adverse cardiovascular effects observed in animal models. p38 mitogen-activated protein kinase (p38mapk) has been shown to be involved in HBP-mediated biological processes. The aim of the present study was to investigate the role of p38mapk in GlcN-induced endothelial PAI-1 expression and eNOS dysfunction. METHODS AND RESULTS: In cultured human endothelial cells, GlcN time- and concentration-dependently increased PAI-1 protein level that was further enhanced by tumor necrosis factor (TNF)-α, which was accompanied by a transient synergistic activation of p38mapk. The stimulation of PAI-1 by GlcN alone or by GlcN and TNF-α in combination was inhibited by the specific inhibitor of p38mapk, but not that of JNK or ERK1/2. Moreover, in isolated mouse aortas, GlcN caused eNOS uncoupling resulting in enhanced superoxide and decreased NO production, as well as impaired endothelium-dependent relaxations, which were also fully prevented by the p38mapk inhibitor. CONCLUSIONS: HBP activated by GlcN increases PAI-1 expression and eNOS uncoupling depending on p38mapk, which not only explains hyperglycemic vascular complications, but also may bring into question the clinical use of GlcN. The present results, support currently ongoing clinical application of p38mapk inhibitor in patients with cardiovascular disease.


Assuntos
Aorta/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosamina/efeitos adversos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Inibidor 1 de Ativador de Plasminogênio/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Aorta/patologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Glucosamina/farmacologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Camundongos , Óxido Nítrico/biossíntese , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Biomolecules ; 12(9)2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36139052

RESUMO

Hypoxia plays a crucial role in acute and chronic renal injury, which is attributable to renal tubular and glomerular cell damage. Some studies provide evidence that hypoxia-dependent upregulation of the mitochondrial enzyme arginase type-II (Arg-II) in tubular cells promotes renal tubular injury. It is, however, not known whether Arg-II is also expressed in glomerular cells, particularly podocytes under hypoxic conditions, contributing to hypoxia-induced podocyte injury. The effects of hypoxia on human podocyte cells (AB8/13) in cultures and on isolated kidneys from wild-type (wt) and arg-ii gene-deficient (arg-ii-/-) mice ex vivo, as well as on mice of the two genotypes in vivo, were investigated, respectively. We found that the Arg-II levels were enhanced in cultured podocytes in a time-dependent manner over 48 h, which was dependent on the stabilization of hypoxia-inducible factor 1α (HIF1α). Moreover, a hypoxia-induced derangement of cellular actin cytoskeletal fibers, a decrease in podocin, and an increase in mitochondrial ROS (mtROS) generation-as measured by MitoSOX-were inhibited by adenoviral-mediated arg-ii gene silencing. These effects of hypoxia on podocyte injury were mimicked by the HIFα stabilizing drug DMOG, which inhibits prolyl hydroxylases (PHD), the enzymes involved in HIFα degradation. The silencing of arg-ii prevented the detrimental effects of DMOG on podocytes. Furthermore, the inhibition of mtROS generation by rotenone-the inhibitor of respiration chain complex-I-recapitulated the protective effects of arg-ii silencing on podocytes under hypoxic conditions. Moreover, the ex vivo experiments with isolated kidney tissues and the in vivo experiments with mice exposed to hypoxic conditions showed increased Arg-II levels in podocytes and decreased podocyte markers regarding synaptopodin in wt mice but not in arg-ii-/- mice. While age-associated albuminuria was reduced in the arg-ii-/- mice, the hypoxia-induced increase in albuminuria was, however, not significantly affected in the arg-ii-/-. Our study demonstrates that Arg-II in podocytes promotes cell injury. Arg-ii ablation seems insufficient to protect mice in vivo against a hypoxia-induced increase in albuminuria, but it does reduce albuminuria in aging.


Assuntos
Arginase , Podócitos , Actinas/metabolismo , Albuminúria , Animais , Arginase/genética , Arginase/metabolismo , Humanos , Hipóxia/metabolismo , Camundongos , Podócitos/metabolismo , Prolil Hidroxilases/metabolismo , Prolil Hidroxilases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia
11.
NPJ Aging Mech Dis ; 7(1): 5, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654066

RESUMO

The aging kidney undergoes complex changes and is vulnerable to injury and development of chronic kidney disease (CKD) with preponderance affecting more women than men. Evidence has been presented that the type-II L-arginine:ureohydrolase, arginase-II (Arg-II) plays a role in the acceleration of aging. Arg-II is highly expressed in the kidney. However, the role of Arg-II in renal aging is not known. This study is to investigate whether Arg-II is involved in the kidney aging process dependently on sex. Arg-II level in the kidney of wild type (WT) mice is significantly elevated with aging, which is accompanied by an increase in expression of the inflammatory cytokines/chemokines, tissue macrophages, factors involved in fibrosis, and tubulointestitial fibrosis in both males and females. This renal aging phenotype is significantly suppressed in arg-II-/- mice, mainly in the females in which Arg-II level is higher than in the males. Importantly, numerous factors such as IL-1ß, MCP1, VCAM-1, and TGFß1 are mainly localized in the proximal tubular S3 segment cells expressing Arg-II in the aging kidney. In human proximal tubular cells (HK-2), TNF-α enhances adhesion molecule expression dependently on Arg-II upregulation. Overexpression of Arg-II in the cells enhances TGFß1 levels which is prevented by mitochondrial ROS inhibition. In summary, our study reveals that renal proximal tubular Arg-II plays an important role in the kidney aging process in females. Arg-II could be a promising therapeutic target for the treatment and prevention of aging-associated kidney diseases.

12.
Front Physiol ; 12: 773719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867480

RESUMO

The ureohydrolase, type-II arginase (Arg-II), is a mitochondrial enzyme metabolizing L-arginine into urea and L-ornithine and is highly expressed in renal proximal tubular cells (PTC) and upregulated by renal ischemia. Recent studies reported contradictory results on the role of Arg-II in renal injury. The aim of our study is to investigate the function of Arg-II in renal epithelial cell damage under hypoxic conditions. Human renal epithelial cell line HK2 was cultured under hypoxic conditions for 12-48 h. Moreover, ex vivo experiments with isolated kidneys from wild-type (WT) and genetic Arg-II deficient mice (Arg-II-/- ) were conducted under normoxic and hypoxic conditions. The results show that hypoxia upregulates Arg-II expression in HK2 cells, which is inhibited by silencing both hypoxia-inducible factors (HIFs) HIF1α and HIF2α. Treatment of the cells with dimethyloxaloylglycine (DMOG) to stabilize HIFα also enhances Arg-II. Interestingly, hypoxia or DMOG upregulates transforming growth factor ß1 (TGFß1) levels and collagens Iα1, which is prevented by Arg-II silencing, while TGFß1-induced collagen Iα1 expression is not affected by Arg-II silencing. Inhibition of mitochondrial complex-I by rotenone abolishes hypoxia-induced reactive oxygen species (mtROS) and TGFß1 elevation in the cells. Ex vivo experiments show elevated Arg-II and TGFß1 expression and the injury marker NGAL in the WT mouse kidneys under hypoxic conditions, which is prevented in the Arg-II-/- mice. Taking together, the results demonstrate that hypoxia activates renal epithelial HIFs-Arg-II-mtROS-TGFß1-cascade, participating in hypoxia-associated renal injury and fibrosis.

13.
Front Pharmacol ; 11: 582155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542686

RESUMO

The impaired L-arginine/nitric oxide pathway is a well-recognized mechanism for cardiovascular and renal diseases with aging. Therefore, supplementation of L-arginine is widely proposed to boost health or as adjunct therapy for the patients. However, clinical data, show adverse effects and even enhanced mortality in patients receiving long-term L-arginine supplementation. The effects of long-term L-arginine supplementation on kidney aging and the underlying mechanisms remain elusive. Moreover, high protein and high amino acid diet has been thought detrimental for kidney. We therefore investigated effects of chronic dietary L-arginine supplementation on kidney aging. In both young (4 months) and old (18-24 months) mice, animals either receive standard chow containing 0.65% L-arginine or diet supplemented with L-arginine to 2.46% for 16 weeks. Inflammation and fibrosis markers and albuminuria are then analyzed. Age-associated increases in tnf-α, il-1ß, and il-6, vcam-1, icam-1, mcp1, inos, and macrophage infiltration, collagen expression, and S6K1 activation are observed, which is not favorably affected, but rather further enhanced, by L-arginine supplementation. Importantly, L-arginine supplementation further enhances age-associated albuminuria and mortality particularly in females, accompanied by elevated renal arginase-II (Arg-II) levels. The enhanced albuminuria by L-arginine supplementation in aging is not protected in Arg-II-/- mice. In contrast, L-arginine supplementation increases ROS and decreases nitric oxide production in old mouse aortas, which is reduced in Arg-II-/- mice. The results do not support benefits of long-term L-arginine supplementation. It rather accelerates functional decline of kidney and vasculature in aging. Thus, the long-term dietary L-arginine supplementation should be avoided particularly in elderly population.

14.
BMC Cardiovasc Disord ; 9: 12, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19284655

RESUMO

BACKGROUND: Pharmacological inhibition of endothelial arginase-II has been shown to improve endothelial nitric oxide synthase (eNOS) function and reduce atherogenesis in animal models. We investigated whether the endothelial arginase II is involved in inflammatory responses in endothelial cells. METHODS: Human endothelial cells were isolated from umbilical veins and stimulated with TNFalpha (10 ng/ml) for 4 hours. Endothelial expression of the inflammatory molecules i.e. vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were assessed by immunoblotting. RESULTS: The induction of the expression of endothelial VCAM-1, ICAM-1 and E-selectin by TNFalpha was concentration-dependently reduced by incubation of the endothelial cells with the arginase inhibitor L-norvaline. However, inhibition of arginase by another arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC) had no effects. To confirm the role of arginase-II (the prominent isoform expressed in HUVECs) in the inflammatory responses, adenoviral mediated siRNA silencing of arginase-II knocked down the arginase II protein level, but did not inhibit the up-regulation of the adhesion molecules. Moreover, the inhibitory effect of L-norvaline was not reversed by the NOS inhibitor L-NAME and L-norvaline did not interfere with TNFalpha-induced activation of NF-kappaB, JNK, p38mapk, while it inhibited p70s6k (S6K1) activity. Silencing S6K1 prevented up-regulation of E-selectin, but not that of VCAM-1 or ICAM-1 induced by TNFalpha. CONCLUSION: The arginase inhibitor L-norvaline exhibits anti-inflammatory effects independently of inhibition of arginase in human endothelial cells. The anti-inflammatory properties of L-norvaline are partially attributable to its ability to inhibit S6K1.


Assuntos
Anti-Inflamatórios/farmacologia , Arginase/metabolismo , Endotélio Vascular/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas/metabolismo , Valina/análogos & derivados , Arginase/genética , Arginase/imunologia , Ácidos Borônicos/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação para Baixo , Selectina E/genética , Selectina E/imunologia , Selectina E/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/imunologia , Feminino , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/imunologia , Óxido Nítrico Sintase Tipo III/metabolismo , Gravidez , RNA Interferente Pequeno/genética , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/imunologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Cordão Umbilical/citologia , Valina/farmacologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
15.
Front Physiol ; 10: 1003, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474872

RESUMO

Hypoxia plays a crucial role in the pathogenesis of cardiovascular diseases. Mitochondrial enzyme arginase type II (Arg-II) is reported to lead to endothelial dysfunction and enhance the expression of endothelial inflammatory adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). In this study, we investigate the role of Arg-II in hypoxia-induced endothelial activation and the potential underlying mechanisms. Exposure of the human endothelial cells to hypoxia induced a time-dependent increase in Arg-II, HIF1α, HIF2α, and ICAM-1 protein level, whereas no change in the protein level of VCAM-1 and E-selectin was observed. Similar effects were obtained in cells treated with a hypoxia mimetic Dimethyloxaloylglycine (DMOG). Silencing HIF1α, but not HIF2α, reversed hypoxia-induced upregulation of Arg-II. Moreover, silencing Arg-II prevented the ICAM-1 upregulation induced by hypoxia or DMOG. Furthermore, the endothelial cells incubated under hypoxic condition or treated with DMOG or hypoxia enhanced monocyte adhesion, which was inhibited by silencing Arg-II. Lastly, silencing Arg-II prevented hypoxia-induced mitochondrial superoxide production in endothelial cells, and hypoxia-induced ICAM-1 upregulation was reversed by mitochondrial electron transport inhibitor rotenone. These data demonstrate that hypoxia enhances ICAM-1 protein level and monocyte-endothelial interaction through HIF1α-mediated increase in Arg-II protein level on leading to increased mitochondrial reactive oxygen species production. These effects of hypoxia on endothelial cells may play a key role in cardiovascular diseases. Our results suggest that Arg-II could be a promising therapeutic target to prevent hypoxia-induced vascular damage/dysfunction.

16.
iScience ; 19: 39-53, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31349190

RESUMO

Insulin-induced AKT activation is dependent on phosphoinositide 3-kinase and opposed by tumor suppressor phosphatase and tensin homolog (PTEN). Our previous study demonstrates that myosin 1b (MYO1B) mediates arginase-II-induced activation of mechanistic target of rapamycin complex 1 that is regulated by AKT. However, the role of MYO1B in AKT activation is unknown. Here we show that silencing MYO1B in mouse embryonic fibroblasts (MEF) inhibits insulin-induced nuclear but not cytoplasmic AKT activation accompanied by elevated nuclear PTEN level. Co-immunoprecipitation, co-immunostaining, and proximity ligation assay show an interaction of MYO1B and PTEN resulting in reduced nuclear PTEN. Moreover, the elevated nuclear PTEN upon silencing MYO1B promotes apoptosis of MEFs and melanoma B16F10 cells. Taken together, we demonstrate that MYO1B, by interacting with PTEN, prevents nuclear localization of PTEN contributing to nuclear AKT activation and suppression of cell apoptosis. This may present a therapeutic approach for cancer treatment such as melanoma.

17.
Circulation ; 115(16): 2188-95, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17404161

RESUMO

BACKGROUND: The circadian clock regulates biological processes including cardiovascular function and metabolism. In the present study, we investigated the role of the circadian clock gene Period2 (Per2) in endothelial function in a mouse model. METHODS AND RESULTS: Compared with the wild-type littermates, mice with Per2 mutation exhibited impaired endothelium-dependent relaxations to acetylcholine in aortic rings suspended in organ chambers. During transition from the inactive to active phase, this response was further increased in the wild-type mice but further decreased in the Per2 mutants. The endothelial dysfunction in the Per2 mutants was also observed with ionomycin, which was improved by the cyclooxygenase inhibitor indomethacin. No changes in the expression of endothelial acetylcholine-M3 receptor or endothelial nitric oxide synthase protein but increased cyclooxygenase-1 (not cyclooxygenase-2) protein levels were observed in the aortas of the Per2 mutants. Compared with Per2 mutants, a greater endothelium-dependent relaxation to ATP was observed in the wild-type mice, which was reduced by indomethacin. In quiescent aortic rings, ATP caused greater endothelium-dependent contractions in the Per2 mutants than in the wild-type mice, contractions that were abolished by indomethacin. The endothelial dysfunction in the Per2 mutant mice is not associated with hypertension or dyslipidemia. CONCLUSIONS: Mutation in the Per2 gene in mice is associated with aortic endothelial dysfunction involving decreased production of NO and vasodilatory prostaglandin(s) and increased release of cyclooxygenase-1-derived vasoconstrictor(s). The results suggest an important role of the Per2 gene in maintenance of normal cardiovascular functions.


Assuntos
Aorta Torácica/fisiopatologia , Proteínas de Ciclo Celular/fisiologia , Ritmo Circadiano/genética , Endotélio Vascular/fisiopatologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Acetilcolina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Antioxidantes/farmacologia , Aorta Torácica/efeitos dos fármacos , Glicemia/análise , Pressão Sanguínea , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Proteínas de Ciclo Celular/genética , Ritmo Circadiano/efeitos da radiação , Ciclo-Oxigenase 1/biossíntese , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/fisiologia , Inibidores de Ciclo-Oxigenase/farmacologia , Regulação da Expressão Gênica , Indometacina/farmacologia , Ionomicina/toxicidade , Lipídeos/sangue , Masculino , Camundongos , Camundongos Knockout , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/deficiência , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III , Nitroprussiato/farmacologia , Proteínas Nucleares/genética , Proteínas Circadianas Period , Receptor Muscarínico M3/biossíntese , Receptor Muscarínico M3/genética , Fatores de Transcrição/genética , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
18.
Cell Death Dis ; 9(3): 313, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472548

RESUMO

Type-II L-arginine:ureahydrolase, arginase-II (Arg-II), is shown to activate mechanistic target of rapamycin complex 1 (mTORC1) pathway and contributes to cell senescence and apoptosis. In an attempt to elucidate the underlying mechanism, we identified myosin-1b (Myo1b) as a mediator. Overexpression of Arg-II induces re-distribution of lysosome and mTOR but not of tuberous sclerosis complex (TSC) from perinuclear area to cell periphery, dissociation of TSC from lysosome and activation of mTORC1-ribosomal protein S6 kinase 1 (S6K1) pathway. Silencing Myo1b prevents all these alterations induced by Arg-II. By overexpressing Myo1b or its mutant with point mutation in its pleckstrin homology (PH) domain we further demonstrate that this effect of Myo1b is dependent on its PH domain that is required for Myo1b-lysosome association. Notably, Arg-II promotes association of Myo1b with lysosomes. In addition, we show that in senescent vascular smooth muscle cells with elevated endogenous Arg-II, silencing Myo1b prevents Arg-II-mediated lysosomal positioning, dissociation of TSC from lysosome, mTORC1 activation and cell apoptosis. Taken together, our study demonstrates that Myo1b mediates the effect of Arg-II in activating mTORC1-S6K1 through promoting peripheral lysosomal positioning, that results in spatial separation and thus dissociation of TSC from lysosome, leading to hyperactive mTORC1-S6K1 signaling linking to cellular senescence/apoptosis.


Assuntos
Apoptose , Arginase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Miócitos de Músculo Liso/metabolismo , Miosina Tipo I/metabolismo , Animais , Arginase/genética , Senescência Celular , Feminino , Lisossomos/genética , Lisossomos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/citologia , Miosina Tipo I/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo
19.
J Am Heart Assoc ; 7(5)2018 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-29478971

RESUMO

BACKGROUND: Uninephrectomy (UNX) is performed for various reasons, including kidney cancer or donation. Kidneys being the main site of l-arginine production in the body, we tested whether UNX mediated kidney mass reduction impacts l-arginine metabolism and thereby nitric oxide production and blood pressure regulation in mice. METHODS AND RESULTS: In a first series of experiments, we observed a significant increase in arterial blood pressure 8 days post-UNX in female and not in male mice. Further experimental series were performed in female mice, and the blood pressure increase was confirmed by telemetry. l-citrulline, that is used in the kidney to produce l-arginine, was elevated post-UNX as was also asymmetric dimethylarginine, an inhibitor of nitric oxide synthase that competes with l-arginine and is a marker for renal failure. Interestingly, the UNX-induced blood pressure increase was prevented by supplementation of the diet with 5% of the l-arginine precursor, l-citrulline. Because l-arginine is metabolized in the kidney and other peripheral tissues by arginase-2, we tested whether the lack of this metabolic pathway also compensates for decreased l-arginine production in the kidney and/or for local nitric oxide synthase inhibition and consecutive blood pressure increase. Indeed, upon uninephrectomy, arginase-2 knockout mice (Arg-2-/-) neither displayed an increase in asymmetric dimethylarginine and l-citrulline plasma levels nor a significant increase in blood pressure. CONCLUSIONS: UNX leads to a small increase in blood pressure that is prevented by l-citrulline supplementation or arginase deficiency, 2 measures that appear to compensate for the impact of kidney mass reduction on l-arginine metabolism.


Assuntos
Arginina/metabolismo , Pressão Sanguínea , Rim/cirurgia , Nefrectomia/efeitos adversos , Animais , Arginase/genética , Arginase/metabolismo , Arginina/análogos & derivados , Arginina/sangue , Pressão Sanguínea/efeitos dos fármacos , Citrulina/administração & dosagem , Citrulina/sangue , Feminino , Rim/metabolismo , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Tamanho do Órgão
20.
Mol Cell Biol ; 22(24): 8467-77, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12446767

RESUMO

Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB.


Assuntos
Endotélio Vascular/metabolismo , Regulação Enzimológica da Expressão Gênica , Óxido Nítrico Sintase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Androstadienos/metabolismo , Células Cultivadas , Regulação para Baixo/fisiologia , Endotélio Vascular/citologia , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo III , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , Trombina/metabolismo , Wortmanina , Proteínas rho de Ligação ao GTP/genética , Quinases Associadas a rho
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa