Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501908

RESUMO

Surface reflectance is an essential product from remote sensing Earth observations critical for a wide variety of applications, including consistent land cover mapping and change, and estimation of vegetation attributes. From 2000 to 2017 the Earth Observing-1 Hyperion instrument acquired the first satellite based hyperspectral image archive from space resulting in over 83,138 publicly available images. Hyperion imagery however requires significant preprocessing to derive surface reflectance. SUREHYP is a Python package designed to process batches of Hyperion images, bringing together a number of published algorithms and methods to correct at sensor radiance and derive surface reflectance. In this paper, we present the SUREHYP workflow and demonstrate its application on Hyperion imagery. Results indicate SUREHYP produces flat terrain surface reflectance results comparable to commercially available software, with reflectance values for the whole spectral range almost entirely within 10% of the software's over a reference target, yet it is publicly available and open source, allowing the exploitation of this valuable hyperspectral archive on a global scale.


Assuntos
Utensílios Domésticos , Algoritmos , Planeta Terra , Imagens, Psicoterapia , Software
2.
Sci Rep ; 13(1): 17179, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821515

RESUMO

The advent of new spaceborne imaging spectrometers offers new opportunities for ecologists to map vegetation traits at global scales. However, to date most imaging spectroscopy studies exploiting satellite spectrometers have been constrained to the landscape scale. In this paper we present a new method to map vegetation traits at the landscape scale and upscale trait maps to the continental level, using historical spaceborne imaging spectroscopy (Hyperion) to derive estimates of leaf mass per area, nitrogen, and carbon concentrations of forests in Québec, Canada. We compare estimates for each species with reference field values and obtain good agreement both at the landscape and continental scales, with patterns consistent with the leaf economic spectrum. By exploiting the Hyperion satellite archive to map these traits and successfully upscale the estimates to the continental scale, we demonstrate the great potential of recent and upcoming spaceborne spectrometers to benefit plant biodiversity monitoring and conservation efforts.


Assuntos
Florestas , Árvores , Quebeque , Análise Espectral/métodos , Diagnóstico por Imagem , Folhas de Planta/química , Ecossistema
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa