Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Immunol ; 202(11): 3256-3266, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31010852

RESUMO

Tetraspanins are a family of proteins possessing four transmembrane domains that help in lateral organization of plasma membrane proteins. These proteins interact with each other as well as other receptors and signaling proteins, resulting in functional complexes called "tetraspanin microdomains." Tetraspanins, including CD82, play an essential role in the pathogenesis of fungal infections. Dectin-1, a receptor for the fungal cell wall carbohydrate ß-1,3-glucan, is vital to host defense against fungal infections. The current study identifies a novel association between tetraspanin CD82 and Dectin-1 on the plasma membrane of Candida albicans-containing phagosomes independent of phagocytic ability. Deletion of CD82 in mice resulted in diminished fungicidal activity, increased C. albicans viability within macrophages, and decreased cytokine production (TNF-α, IL-1ß) at both mRNA and protein level in macrophages. Additionally, CD82 organized Dectin-1 clustering in the phagocytic cup. Deletion of CD82 modulates Dectin-1 signaling, resulting in a reduction of Src and Syk phosphorylation and reactive oxygen species production. CD82 knockout mice were more susceptible to C. albicans as compared with wild-type mice. Furthermore, patient C. albicans-induced cytokine production was influenced by two human CD82 single nucleotide polymorphisms, whereas an additional CD82 single nucleotide polymorphism increased the risk for candidemia independent of cytokine production. Together, these data demonstrate that CD82 organizes the proper assembly of Dectin-1 signaling machinery in response to C. albicans.


Assuntos
Candida albicans/fisiologia , Candidíase/metabolismo , Membrana Celular/metabolismo , Proteína Kangai-1/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Fagossomos/metabolismo , Animais , Candidíase/imunologia , Linhagem Celular , Predisposição Genética para Doença , Humanos , Imunidade Celular , Interleucina-1beta/metabolismo , Proteína Kangai-1/genética , Lectinas Tipo C/genética , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
2.
FASEB J ; 33(11): 12500-12514, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31408613

RESUMO

The tetraspanin CD82 is a potent suppressor of tumor metastasis and regulates several processes including signal transduction, cell adhesion, motility, and aggregation. However, the mechanisms by which CD82 participates in innate immunity are unknown. We report that CD82 is a key regulator of TLR9 trafficking and signaling. TLR9 recognizes unmethylated cytosine-phosphate-guanine (CpG) motifs present in viral, bacterial, and fungal DNA. We demonstrate that TLR9 and CD82 associate in macrophages, which occurs in the endoplasmic reticulum (ER) and post-ER. Moreover, CD82 is essential for TLR9-dependent myddosome formation in response to CpG stimulation. Finally, CD82 modulates TLR9-dependent NF-κB nuclear translocation, which is critical for inflammatory cytokine production. To our knowledge, this is the first time a tetraspanin has been implicated as a key regulator of TLR signaling. Collectively, our study demonstrates that CD82 is a specific regulator of TLR9 signaling, which may be critical in cancer immunotherapy approaches and coordinating the innate immune response to pathogens.-Khan, N. S., Lukason, D. P., Feliu, M., Ward, R. A., Lord, A. K., Reedy, J. L., Ramirez-Ortiz, Z. G., Tam, J. M., Kasperkovitz, P. V., Negoro, P. E., Vyas, T. D., Xu, S., Brinkmann, M. M., Acharaya, M., Artavanis-Tsakonas, K., Frickel, E.-M., Becker, C. E., Dagher, Z., Kim, Y.-M., Latz, E., Ploegh, H. L., Mansour, M. K., Miranti, C. K., Levitz, S. M., Vyas, J. M. CD82 controls CpG-dependent TLR9 signaling.


Assuntos
Núcleo Celular/imunologia , Proteína Kangai-1/imunologia , Macrófagos/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor Toll-Like 9/imunologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Animais , Núcleo Celular/genética , Citocinas/genética , Citocinas/imunologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Proteína Kangai-1/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/imunologia , Células RAW 264.7 , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor Toll-Like 9/genética
3.
J Cell Sci ; 130(11): 1952-1964, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28446540

RESUMO

Many pathways dysregulated in prostate cancer are also involved in epithelial differentiation. To better understand prostate tumor initiation, we sought to investigate specific genes and mechanisms required for normal basal to luminal cell differentiation. Utilizing human prostate basal epithelial cells and an in vitro differentiation model, we tested the hypothesis that regulation of NOTCH3 by the p38 MAPK family (hereafter p38-MAPK), via MYC, is required for luminal differentiation. Inhibition (SB202190 and BIRB796) or knockdown of p38α (also known as MAPK14) and/or p38δ (also known as MAPK13) prevented proper differentiation. Additionally, treatment with a γ-secretase inhibitor (RO4929097) or knockdown of NOTCH1 and/or NOTCH3 greatly impaired differentiation and caused luminal cell death. Constitutive p38-MAPK activation through MKK6(CA) increased NOTCH3 (but not NOTCH1) mRNA and protein levels, which was diminished upon MYC inhibition (10058-F4 and JQ1) or knockdown. Furthermore, we validated two NOTCH3 enhancer elements through a combination of enhancer (e)RNA detection (BruUV-seq) and luciferase reporter assays. Finally, we found that the NOTCH3 mRNA half-life increased during differentiation or upon acute p38-MAPK activation. These results reveal a new connection between p38-MAPK, MYC and NOTCH signaling, demonstrate two mechanisms of NOTCH3 regulation and provide evidence for NOTCH3 involvement in prostate luminal cell differentiation.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/genética , Receptor Notch3/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Diferenciação Celular , Linhagem Celular Transformada , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Genes Reporter , Células HEK293 , Meia-Vida , Humanos , Imidazóis/farmacologia , Luciferases/genética , Luciferases/metabolismo , Masculino , Naftalenos/farmacologia , Cultura Primária de Células , Próstata/citologia , Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor Notch3/antagonistas & inibidores , Receptor Notch3/metabolismo , Transdução de Sinais , Tiazóis/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Prostate ; 77(1): 49-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27527891

RESUMO

BACKGROUND: How prostate epithelial cells differentiate and how dysregulation of this process contributes to prostate tumorigenesis remain unclear. We recently identified a Myc target and chromatin reader protein, ING4, as a necessary component of human prostate luminal epithelial cell differentiation, which is often lost in primary prostate tumors. Furthermore, loss of ING4 in the context of oncogenic mutations is required for prostate tumorigenesis. Identifying the gene targets of ING4 can provide insight into how its loss disrupts differentiation and leads to prostate cancer. METHODS: Using a combination of RNA-Seq, a best candidate approach, and chromatin immunoprecipitation (ChIP), we identified Miz1 as a new ING4 target. ING4 or Miz1 overexpression, shRNA knock-down, and a Myc-binding mutant were used in a human in vitro differentiation assay to assess the role of Miz1 in luminal cell differentiation. RESULTS: ING4 directly binds the Miz1 promoter and is required to induce Miz1 mRNA and protein expression during luminal cell differentiation. Miz1 mRNA was not induced in shING4 expressing cells or tumorigenic cells in which ING4 is not expressed. Miz1 dependency on ING4 was unique to differentiating luminal cells; Miz1 mRNA expression was not induced in basal cells. Although Miz1 is a direct target of ING4, and its overexpression can drive luminal cell differentiation, Miz1 was not required for differentiation. CONCLUSIONS: Miz1 is a newly identified ING4-induced target gene which can drive prostate luminal epithelial cell differentiation although it is not absolutely required. Prostate 77:49-59, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Proteínas de Homeodomínio/biossíntese , Fatores de Transcrição Kruppel-Like/biossíntese , Próstata/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Próstata/citologia , Ligação Proteica/fisiologia , Proteínas Supressoras de Tumor/metabolismo
5.
BMC Biotechnol ; 17(1): 24, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245848

RESUMO

BACKGROUND: Short hairpin RNA (shRNA) is an established and effective tool for stable knock down of gene expression. Lentiviral vectors can be used to deliver shRNAs, thereby providing the ability to infect most mammalian cell types with high efficiency, regardless of proliferation state. Furthermore, the use of inducible promoters to drive shRNA expression allows for more thorough investigations into the specific timing of gene function in a variety of cellular processes. Moreover, inducible knockdown allows the investigation of genes that would be lethal or otherwise poorly tolerated if constitutively knocked down. Lentiviral inducible shRNA vectors are readily available, but unfortunately the process of cloning, screening, and testing shRNAs can be time-consuming and expensive. Therefore, we sought to refine a popular vector (Tet-pLKO-Puro) and streamline the cloning process with efficient protocols so that researchers can more efficiently utilize this powerful tool. METHODS: First, we modified the Tet-pLKO-Puro vector to make it easy ("EZ") for molecular cloning (EZ-Tet-pLKO-Puro). Our primary modification was to shrink the stuffer region, which allows vector purification via polyethylene glycol precipitation thereby avoiding the need to purify DNA through agarose. In addition, we generated EZ-Tet-pLKO vectors with hygromycin or blasticidin resistance to provide greater flexibility in cell line engineering. Furthermore, we provide a detailed guide for utilizing these vectors, including shRNA design strategy and simplified screening methods. RESULTS: Notably, we emphasize the importance of loop sequence design and demonstrate that the addition of a single mismatch in the loop stem can greatly improve shRNA efficiency. Lastly, we display the robustness of the system with a doxycycline titration and recovery time course and provide a cost/benefit analysis comparing our system with purchasing pre-designed shRNA vectors. CONCLUSIONS: Our aim was twofold: first, to take a very useful shRNA vector and make it more amenable for molecular cloning and, secondly, to provide a streamlined protocol and rationale for cost-effective design, cloning, and screening of shRNAs. With this knowledge, anyone can take advantage of this powerful tool to inducibly knockdown any gene of their choosing.


Assuntos
Clonagem Molecular/métodos , Técnicas de Silenciamento de Genes/métodos , Vetores Genéticos/genética , Lentivirus/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Doxiciclina/farmacologia , Desenho de Fármacos , Vetores Genéticos/química , Vetores Genéticos/efeitos dos fármacos , Transfecção/métodos
6.
Exp Cell Res ; 339(2): 261-9, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26562164

RESUMO

Integrin αIIbß3 is critical for platelet-mediated blood clotting. Tetraspanins are well-established regulators of integrins and genetic loss of tetraspanin CD151 or TSSC6 in mice leads to increased bleeding due to inadequate integrin αIIbß3 outside-in signaling. Conversely, mild but enhanced integrin αIIbß3 activation and hyperaggregation is observed in CD9 and CD63 null mice respectively. CD82 is reportedly expressed in platelets; however its function is unknown. Using genetically engineered CD82 null mice, we investigated the role of the tetraspanin CD82 in platelet activation. Loss of CD82 resulted in reduced bleed times in vivo. CD82 was present on the surface of both human and mouse platelets, and its levels did not change upon platelet activation or degranulation. No differences in platelet activation, degranulation, or aggregation in response to ADP or collagen were detected in CD82 null mice. However, the kinetics of clot retraction was enhanced, which was intrinsic to the CD82-null platelets. Integrin αIIbß3 surface expression was elevated on the platelets from CD82 null mice and they displayed enhanced adhesion and tyrosine kinase signaling on fibrinogen. This is the first report on CD82 function in platelets; which we found intrinsically modulates clot retraction, integrin αIIbß3 expression, cell adhesion, and tyrosine signaling.


Assuntos
Plaquetas/metabolismo , Retração do Coágulo/genética , Proteína Kangai-1/deficiência , Proteína Kangai-1/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Animais , Humanos , Camundongos , Camundongos Knockout , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo
7.
J Pathol ; 230(3): 291-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23420560

RESUMO

The complexity of survival mechanisms in cancer cells from patients remains poorly understood. To obtain a comprehensive picture of tumour cell survival in lethal prostate cancer metastases, we examined five survival proteins that operate within three survival pathways in a cohort of 185 lethal metastatic prostate metastases obtained from 44 patients. The expression levels of BCL-2, BCL-XL, MCL-1, cytoplasmic survivin, nuclear survivin, and stathmin were measured by immunohistochemistry in a tissue microarray. Simultaneous expression of three or more proteins occurred in 81% of lethal prostate cancer metastases and BCL-2, cytoplasmic survivin and MCL-1 were co-expressed in 71% of metastatic sites. An unsupervised cluster analysis separated bone and soft tissue metastases according to patterns of survival protein expression. BCL-2, cytoplasmic survivin and MCL-1 had significantly higher expression in bone metastases (p < 10(-5)), while nuclear survivin was significantly higher in soft tissue metastases (p = 3 × 10(-14)). BCL-XL overexpression in soft tissue metastases almost reached significance (p = 0.09), while stathmin expression did not (p = 0.28). In addition, the expression of MCL-1 was significantly higher in AR-positive tumours. Neuroendocrine differentiation was not associated with specific survival pathways. These studies show that bone and soft tissue metastases from the same patient differ significantly in expression of a panel of survival proteins and that with regard to survival protein expression, expression is associated with the metastatic site and not the patient. Altogether, this suggests that optimal therapeutic inhibition may require combinations of drugs that target both bone and soft tissue-specific survival pathways.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/secundário , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/metabolismo , Neoplasias de Tecidos Moles/secundário , Animais , Apoptose , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Sobrevivência Celular , Análise por Conglomerados , Estudos de Coortes , Progressão da Doença , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Masculino , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Coelhos , Neoplasias de Tecidos Moles/metabolismo , Neoplasias de Tecidos Moles/patologia , Estatmina/metabolismo , Survivina , Análise Serial de Tecidos , Microambiente Tumoral , Washington , Proteína bcl-X/biossíntese , Proteína bcl-X/metabolismo
8.
Front Bioeng Biotechnol ; 12: 1302223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322789

RESUMO

Lack of adequate models significantly hinders advances in prostate cancer treatment, where resistance to androgen-deprivation therapies and bone metastasis remain as major challenges. Current in vitro models fail to faithfully mimic the complex prostate physiology. In vivo animal models can shed light on the oncogenes involved in prostate cancer development and progression; however, the animal prostate gland is fundamentally different from that of human, and the underlying genetic mechanisms are different. To address this problem, we developed the first in vitro microfluidic human Prostate-Cancer-on-Chip (PCoC) model, where human prostate cancer and stromal fibroblast cells were co-cultivated in two channels separated by a porous membrane under culture medium flow. The established microenvironment enables soluble signaling factors secreted by each culture to locally diffuse through the membrane pores affecting the neighboring culture. We particularly explored the conversion of the stromal fibroblasts into cancer-associated fibroblasts (CAFs) due to the interaction between the 2 cell types. Immunofluorescence microscopy revealed that tumor cells induced CAF biomarkers, αSMA and COL1A1, in stromal fibroblasts. The stromal CAF conversion level was observed to increase along the flow direction in response to diffusion agents, consistent with simulations of solute concentration gradients. The tumor cells also downregulated androgen receptor (AR) expression in stromal fibroblasts, while an adequate level of stromal AR expression is maintained in normal prostate homeostasis. We further investigated tumor invasion into the stroma, an early step in the metastatic cascade, in devices featuring a serpentine channel with orthogonal channel segments overlaying a straight channel and separated by an 8 µm-pore membrane. Both tumor cells and stromal CAFs were observed to cross over into their neighboring channel, and the stroma's role seemed to be proactive in promoting cell invasion. As control, normal epithelial cells neither induced CAF conversion nor promoted cell invasion. In summary, the developed PCoC model allows spatiotemporal analysis of the tumor-stroma dynamic interactions, due to bi-directional signaling and physical contact, recapitulating tissue-level multicellular responses associated with prostate cancer in vivo. Hence, it can serve as an in vitro model to dissect mechanisms in human prostate cancer development and seek advanced therapeutic strategies.

9.
Oncogene ; 43(27): 2092-2103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38769192

RESUMO

Androgen Receptor (AR) activity in prostate stroma is required to maintain prostate homeostasis. This is mediated through androgen-dependent induction and secretion of morphogenic factors that drive epithelial cell differentiation. However, stromal AR expression is lost in aggressive prostate cancer. The mechanisms leading to stromal AR loss and morphogen production are unknown. We identified TGFß1 and TNFα as tumor-secreted factors capable of suppressing AR mRNA and protein expression in prostate stromal fibroblasts. Pharmacological and RNAi approaches identified NF-κB as the major signaling pathway involved in suppressing AR expression by TNFα. In addition, p38α- and p38δ-MAPK were identified as suppressors of AR expression independent of TNFα. Two regions of the AR promoter were responsible for AR suppression through TNFα. FGF10 and Wnt16 were identified as androgen-induced morphogens, whose expression was lost upon TNFα treatment and enhanced upon p38-MAPK inhibition. Wnt16, through non-canonical Jnk signaling, was required for prostate basal epithelial cell survival. These findings indicate that stromal AR loss is mediated by secreted factors within the TME. We identified TNFα/TGFß as two possible factors, with TNFα mediating its effects through NF-κB or p38-MAPK to suppress AR mRNA transcription. This leads to loss of androgen-regulated stromal morphogens necessary to maintain normal epithelial homeostasis.


Assuntos
NF-kappa B , Neoplasias da Próstata , Receptores Androgênicos , Células Estromais , Proteínas Quinases p38 Ativadas por Mitógeno , Masculino , Humanos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , NF-kappa B/metabolismo , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Células Estromais/metabolismo , Células Estromais/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fator de Necrose Tumoral alfa/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Transdução de Sinais , Próstata/patologia , Próstata/metabolismo
10.
Endocrinology ; 164(6)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37192413

RESUMO

Given the central role of the androgen receptor (AR) in prostate cancer cell biology, AR-targeted therapies have been the backbone of prostate cancer treatment for over 50 years. New data indicate that AR is expressed in additional cell types within the tumor microenvironment. Moreover, targeting AR for the treatment of prostate cancer has established side effects such as bone complications and an increased risk of developing cardiometabolic disease, indicating broader roles for AR. With the advent of novel technologies, such as single-cell approaches and advances in preclinical modeling, AR has been identified to have clinically significant functions in other cell types. In this mini-review, we describe new cancer cell-extrinsic roles for AR within the tumor microenvironment as well as systemic effects that collectively impact prostate cancer progression and patient outcomes.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Receptores de Andrógenos , Osso e Ossos/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Microambiente Tumoral
11.
J Cell Biol ; 222(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37042842

RESUMO

Distinguishing key factors that drive the switch from indolent to invasive disease will make a significant impact on guiding the treatment of prostate cancer (PCa) patients. Here, we identify a novel signaling pathway linking hypoxia and PIM1 kinase to the actin cytoskeleton and cell motility. An unbiased proteomic screen identified Abl-interactor 2 (ABI2), an integral member of the wave regulatory complex (WRC), as a PIM1 substrate. Phosphorylation of ABI2 at Ser183 by PIM1 increased ABI2 protein levels and enhanced WRC formation, resulting in increased protrusive activity and cell motility. Cell protrusion induced by hypoxia and/or PIM1 was dependent on ABI2. In vivo smooth muscle invasion assays showed that overexpression of PIM1 significantly increased the depth of tumor cell invasion, and treatment with PIM inhibitors significantly reduced intramuscular PCa invasion. This research uncovers a HIF-1-independent signaling axis that is critical for hypoxia-induced invasion and establishes a novel role for PIM1 as a key regulator of the actin cytoskeleton.


Assuntos
Actinas , Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-pim-1 , Humanos , Masculino , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Hipóxia , Proteômica , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transdução de Sinais , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Invasividade Neoplásica
12.
J Cell Sci ; 123(Pt 2): 266-76, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20048343

RESUMO

The androgen receptor (AR) is expressed in differentiated secretory prostate epithelial cells in vivo. However, in the human prostate, it is unclear whether androgens directly promote the survival of secretory cells, or whether secretory cells survive through androgen-dependent signals from the prostate stroma. Biochemical and mechanistic studies have been hampered by inadequate cell-culture models. In particular, large-scale differentiation of prostate epithelial cells in culture has been difficult to achieve. Here, we describe the development of a differentiation system that is amenable to functional and biochemical analysis and its application to deciphering the survival pathways in differentiated AR-expressing epithelial cells. Confluent prostate epithelial cell cultures were treated with keratinocyte growth factor (KGF) and dihydrotestosterone. After 2 weeks, a suprabasal cell layer was formed in which cells no longer expressed alpha2, alpha3, alpha6, alphav, beta1 or beta4 integrins or p63, K5, K14, EGFR, FGFR2IIIb or Bcl-2, but instead expressed AR and androgen-induced differentiation markers, including K18, K19, TMPRSS2, Nkx3.1, PMSA, KLK2 and secreted prostate-specific antigen (PSA). Differentiated prostate cell survival depended on E-cadherin and PI3K, but not KGF, androgen, AR or MAPK. Thus survival of differentiated prostate epithelial cells is mediated by cell-cell adhesion, and not through androgen activity or prostate stroma-derived KGF.


Assuntos
Caderinas/metabolismo , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Receptores Androgênicos/metabolismo , Androgênios/farmacologia , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Di-Hidrotestosterona/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Fator 7 de Crescimento de Fibroblastos/farmacologia , Humanos , Integrinas/metabolismo , Masculino , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Próstata
13.
Nat Cell Biol ; 4(4): E83-90, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11944041

RESUMO

Cell adhesion mediated by integrin receptors has a critical function in organizing cells in tissues and in guiding haematopoietic cells to their sites of action. However, integrin adhesion receptors have broader functions in regulating cell behaviour through their ability to transduce bi-directional signals into and out of the cell and to engage in reciprocal interactions with other cellular receptors. This historical perspective traces the key findings that have led to our current understanding of these important functions of integrins.


Assuntos
Integrinas/fisiologia , Transdução de Sinais , Animais , Adesão Celular , Divisão Celular , Sobrevivência Celular , Citoesqueleto/metabolismo , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Células-Tronco Hematopoéticas/metabolismo , Humanos , Integrinas/metabolismo , Modelos Biológicos , Proteínas Tirosina Quinases/metabolismo
14.
Oncogene ; 40(32): 5142-5152, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34211090

RESUMO

Angiogenesis is essential for the sustained growth of solid tumors. Hypoxia-inducible factor 1 (HIF-1) is a master regulator of angiogenesis and constitutive activation of HIF-1 is frequently observed in human cancers. Therefore, understanding the mechanisms governing the activation of HIF-1 is critical for successful therapeutic targeting of tumor angiogenesis. Herein, we establish a new regulatory mechanism responsible for the constitutive activation of HIF-1α in cancer, irrespective of oxygen tension. PIM1 kinase directly phosphorylates HIF-1α at threonine 455, a previously uncharacterized site within its oxygen-dependent degradation domain. This phosphorylation event disrupts the ability of prolyl hydroxylases to bind and hydroxylate HIF-1α, interrupting its canonical degradation pathway and promoting constitutive transcription of HIF-1 target genes. Moreover, phosphorylation of the analogous site in HIF-2α (S435) stabilizes the protein through the same mechanism, indicating post-translational modification within the oxygen-dependent degradation domain as a mechanism of regulating the HIF-α subunits. In vitro and in vivo models demonstrate that expression of PIM1 is sufficient to stabilize HIF-1α and HIF-2α in normoxia and stimulate angiogenesis in a HIF-1-dependent manner. CRISPR mutants of HIF-1α (Thr455D) promoted increased tumor growth, proliferation, and angiogenesis. Moreover, HIF-1α-T455D xenograft tumors were refractory to the anti-angiogenic and cytotoxic effects of PIM inhibitors. These data identify a new signaling axis responsible for hypoxia-independent activation of HIF-1 and expand our understanding of the tumorigenic role of PIM1 in solid tumors.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Mutação , Neoplasias/patologia , Fosforilação , Ligação Proteica , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/genética
15.
Med ; 2(3): 321-342, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33870243

RESUMO

BACKGROUND: The extensive alveolar capillary network of the lungs is an attractive route for administration of several agents. One key functional attribute is the rapid onset of systemic action due to the absence of first-pass metabolism. METHODS: Here we applied a combinatorial approach for ligand-directed pulmonary delivery as a unique route for systemic targeting in vaccination. FINDINGS: We screened a phage display random peptide library in vivo to select, identify, and validate a ligand (CAKSMGDIVC) that specifically targets and is internalized through its receptor, α3ß1 integrin, on the surface of cells lining the lung airways and alveoli and mediates CAKSMGDIVC-displaying phage binding and systemic delivery without compromising lung homeostasis. As a proof-of-concept, we show that the pulmonary delivery of targeted CAKSMGDIVC-displaying phage particles in mice and non-human primates elicit a systemic and specific humoral response. CONCLUSIONS: This broad methodology blueprint represents a robust and versatile platform tool enabling new ligand-receptor discovery with many potential translational applications. FUNDING: Cancer Center Support Grants to the University of Texas M.D. Anderson Cancer Center (CA016672), University of New Mexico Comprehensive Cancer Center (CA118100), Rutgers Cancer Institute of New Jersey (CA072720), research awards from the Gillson Longenbaugh Foundation, and National Institutes of Health (NIH) grant no. 1R01CA226537.


Assuntos
Bacteriófagos , Pulmão , Animais , Bacteriófagos/genética , Proteínas de Transporte/metabolismo , Ligantes , Pulmão/metabolismo , Camundongos , Primatas/metabolismo , Estados Unidos , Vacinação
16.
Mol Biol Cell ; 18(7): 2481-90, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17475774

RESUMO

In vivo in the prostate gland, basal epithelial cells adhere to laminin 5 (LM5) via alpha3beta1 and alpha6beta4 integrins. When placed in culture primary prostate basal epithelial cells secrete and adhere to their own LM5-rich matrix. Adhesion to LM5 is required for cell survival that is dependent on integrin-mediated, ligand-independent activation of the epidermal growth factor receptor (EGFR) and the cytoplasmic tyrosine kinase Src, but not PI-3K. Integrin-mediated adhesion via alpha3beta1, but not alpha6beta4 integrin, supports cell survival through EGFR by signaling downstream to Erk. PC3 cells, which do not activate EGFR or Erk on LM5-rich matrices, are not dependent on this pathway for survival. PC3 cells are dependent on PI-3K for survival and undergo caspase-dependent death when PI-3K is inhibited. The death induced by inhibition of EGFR or Src in normal primary prostate cells is not mediated through or dependent on caspase activation, but depends on the induction of reactive oxygen species. In addition the presence of an autophagic pathway, maintained by adhesion to matrix through alpha3beta1 and alpha6beta4, prevents the induction of caspases when EGFR or Src is inhibited. Suppression of autophagy is sufficient to induce caspase activation and apoptosis in LM5-adherent primary prostate epithelial cells.


Assuntos
Caspases/metabolismo , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Integrinas/metabolismo , Receptor Cross-Talk , Quinases da Família src/metabolismo , Autofagia/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Humanos , Integrina alfa3/metabolismo , Integrina alfa6/metabolismo , Ligantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Modelos Biológicos , Próstata/citologia , Próstata/efeitos dos fármacos , Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor Cross-Talk/efeitos dos fármacos , Calinina
18.
Oncogene ; 39(31): 5390-5404, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32565538

RESUMO

The androgen receptor (AR) is the major driver of prostate cancer growth and survival. However, almost all patients relapse with castration-resistant disease (CRPC) when treated with anti-androgen therapy. In CRPC, AR is often aberrantly activated independent of androgen. Targeting survival pathways downstream of AR could be a viable strategy to overcome CRPC. Surprisingly, little is known about how AR drives prostate cancer survival. Furthermore, CRPC tumors in which Pten is lost are also resistant to eradication by PI3K inhibitors. We sought to identify the mechanism by which AR drives tumor survival in CRPC to identify ways to overcome resistance to PI3K inhibition. We found that integrins α6ß1 and Bnip3 are selectively elevated in CRPC downstream of AR. While integrin α6 promotes survival and is a direct transcriptional target of AR, the ability of AR to induce Bnip3 is dependent on adhesion to laminin and integrin α6ß1-dependent nuclear translocation of HIF1α. Integrins α6ß1 and Bnip3 were found to promote survival of CRPC cells selectively on laminin through the induction of autophagy and mitophagy. Furthermore, blocking Bnip3 or integrin α6ß1 restored sensitivity to PI3K inhibitors in Pten-negative CRPC. We identified an AR driven pathway that cooperates with laminin and hypoxia to drive resistance to PI3K inhibitors. These findings can help explain in part why PI3K inhibitors have failed in clinical trials to overcome AR-dependent CRPC.


Assuntos
Integrina alfa6beta1/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Androgênicos/genética , Animais , Humanos , Masculino , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Androgênicos/metabolismo , Análise de Sobrevida
19.
Oncotarget ; 11(19): 1758-1776, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32477465

RESUMO

The androgen receptor (AR) is a major driver of prostate cancer development and progression. Men who develop advanced prostate cancer often have long-term cancer control when treated with androgen-deprivation therapies (ADT). Still, their disease inevitably becomes resistant to ADT and progresses to castration-resistant prostate cancer (CRPC). ADT involves potent competitive AR antagonists and androgen synthesis inhibitors. Resistance to these types of treatments emerges, primarily through the maintenance of AR signaling by ligand-independent activation mechanisms. There is a need to find better ways to block AR to overcome CRPC. In the findings reported here, we demonstrate that the nuclear scaffold protein, nucleolin (NCL), suppresses the expression of AR. NCL binds to a G-rich region in the AR promoter that forms a G-quadruplex (G4) structure. Binding of NCL to this G4-element is required for NCL to suppress AR expression, specifically in AR-expressing tumor cells. Compounds that stabilize G4 structures require NCL to associate with the G4-element of the AR promoter in order to decrease AR expression. A newly discovered G4 compound that suppresses AR expression demonstrates selective killing of AR-expressing tumor cells, including CRPC lines. Our findings raise the significant possibility that G4-stabilizing drugs can be used to increase NCL transcriptional repressor activity to block AR expression in prostate cancer. Our studies contribute to a clearer understanding of the mechanisms that control AR expression, which could be exploited to overcome CRPC.

20.
Oncogene ; 39(1): 204-218, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31467432

RESUMO

Prostate cancer metastases primarily localize in the bone where they induce a unique osteoblastic response. Elevated Notch activity is associated with high-grade disease and metastasis. To address how Notch affects prostate cancer bone lesions, we manipulated Notch expression in mouse tibia xenografts and monitored tumor growth, lesion phenotype, and the bone microenvironment. Prostate cancer cell lines that induce mixed osteoblastic lesions in bone expressed 5-6 times more Notch3, than tumor cells that produce osteolytic lesions. Expression of active Notch3 (NICD3) in osteolytic tumors reduced osteolytic lesion area and enhanced osteoblastogenesis, while loss of Notch3 in osteoblastic tumors enhanced osteolytic lesion area and decreased osteoblastogensis. This was accompanied by a respective decrease and increase in the number of active osteoclasts and osteoblasts at the tumor-bone interface, without any effect on tumor proliferation. Conditioned medium from NICD3-expressing cells enhanced osteoblast differentiation and proliferation in vitro, while simultaneously inhibiting osteoclastogenesis. MMP-3 was specifically elevated and secreted by NICD3-expressing tumors, and inhibition of MMP-3 rescued the NICD3-induced osteoblastic phenotypes. Clinical osteoblastic bone metastasis samples had higher levels of Notch3 and MMP-3 compared with patient matched visceral metastases or osteolytic metastasis samples. We identified a Notch3-MMP-3 axis in human prostate cancer bone metastases that contributes to osteoblastic lesion formation by blocking osteoclast differentiation, while also contributing to osteoblastogenesis. These studies define a new role for Notch3 in manipulating the tumor microenvironment in bone metastases.


Assuntos
Neoplasias Ósseas/genética , Metaloproteinase 3 da Matriz/genética , Neoplasias da Próstata/genética , Receptor Notch3/genética , Animais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Diferenciação Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Metástase Neoplásica , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/genética , Neoplasias da Próstata/patologia , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa