Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(31): 7967-7972, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012626

RESUMO

The transport of proteins across or into membranes is a vital biological process, achieved in every cell by the conserved Sec machinery. In bacteria, SecYEG combines with the SecA motor protein for secretion of preproteins across the plasma membrane, powered by ATP hydrolysis and the transmembrane proton-motive force (PMF). The activities of SecYEG and SecA are modulated by membrane lipids, particularly cardiolipin (CL), a specialized phospholipid known to associate with a range of energy-transducing machines. Here, we identify two specific CL binding sites on the Thermotoga maritima SecA-SecYEG complex, through application of coarse-grained molecular dynamics simulations. We validate the computational data and demonstrate the conserved nature of the binding sites using in vitro mutagenesis, native mass spectrometry, biochemical analysis, and fluorescence spectroscopy of Escherichia coli SecYEG. The results show that the two sites account for the preponderance of functional CL binding to SecYEG, and mediate its roles in ATPase and protein transport activity. In addition, we demonstrate an important role for CL in the conferral of PMF stimulation of protein transport. The apparent transient nature of the CL interaction might facilitate proton exchange with the Sec machinery, and thereby stimulate protein transport, by a hitherto unexplored mechanism. This study demonstrates the power of coupling the high predictive ability of coarse-grained simulation with experimental analyses, toward investigation of both the nature and functional implications of protein-lipid interactions.


Assuntos
Sistemas de Secreção Bacterianos/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Simulação de Dinâmica Molecular , Força Próton-Motriz , Canais de Translocação SEC/química , Thermotoga maritima/química , Sistemas de Secreção Bacterianos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Canais de Translocação SEC/metabolismo , Thermotoga maritima/metabolismo
2.
Microb Cell Fact ; 19(1): 176, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887610

RESUMO

Membrane remodeling and phospholipid biosynthesis are normally tightly regulated to maintain the shape and function of cells. Indeed, different physiological mechanisms ensure a precise coordination between de novo phospholipid biosynthesis and modulation of membrane morphology. Interestingly, the overproduction of certain membrane proteins hijack these regulation networks, leading to the formation of impressive intracellular membrane structures in both prokaryotic and eukaryotic cells. The proteins triggering an abnormal accumulation of membrane structures inside the cells (or membrane proliferation) share two major common features: (1) they promote the formation of highly curved membrane domains and (2) they lead to an enrichment in anionic, cone-shaped phospholipids (cardiolipin or phosphatidic acid) in the newly formed membranes. Taking into account the available examples of membrane proliferation upon protein overproduction, together with the latest biochemical, biophysical and structural data, we explore the relationship between protein synthesis and membrane biogenesis. We propose a mechanism for the formation of these non-physiological intracellular membranes that shares similarities with natural inner membrane structures found in α-proteobacteria, mitochondria and some viruses-infected cells, pointing towards a conserved feature through evolution. We hope that the information discussed in this review will give a better grasp of the biophysical mechanisms behind physiological and induced intracellular membrane proliferation, and inspire new applications, either for academia (high-yield membrane protein production and nanovesicle production) or industry (biofuel production and vaccine preparation).


Assuntos
Membrana Celular/fisiologia , Extensões da Superfície Celular/metabolismo , Proteínas de Membrana/fisiologia , Organelas/fisiologia , Fosfolipídeos/fisiologia , Membrana Celular/ultraestrutura , Extensões da Superfície Celular/ultraestrutura , Organelas/ultraestrutura , Conformação Proteica
3.
Chem Rev ; 118(7): 3559-3607, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29488756

RESUMO

Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.


Assuntos
Membrana Celular/ultraestrutura , Detergentes/química , Proteínas de Membrana/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Animais , Fenômenos Biofísicos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Espectroscopia de Ressonância Magnética/métodos , Micelas , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Solubilidade
4.
Microb Cell Fact ; 18(1): 131, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400768

RESUMO

BACKGROUND: The overexpression and purification of membrane proteins is a bottleneck in biotechnology and structural biology. E. coli remains the host of choice for membrane protein production. To date, most of the efforts have focused on genetically tuning of expression systems and shaping membrane composition to improve membrane protein production remained largely unexplored. RESULTS: In E. coli C41(DE3) strain, we deleted two transporters involved in fatty acid metabolism (OmpF and AcrB), which are also recalcitrant contaminants crystallizing even at low concentration. Engineered expression hosts presented an enhanced fitness and improved folding of target membrane proteins, which correlated with an altered membrane fluidity. We demonstrated the scope of this approach by overproducing several membrane proteins (4 different ABC transporters, YidC and SecYEG). CONCLUSIONS: In summary, E. coli membrane engineering unprecedentedly increases the quality and yield of membrane protein preparations. This strategy opens a new field for membrane protein production, complementary to gene expression tuning.


Assuntos
Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Lipídeos/química , Proteínas de Membrana/biossíntese , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Engenharia Metabólica , Canais de Translocação SEC/química , Canais de Translocação SEC/genética
5.
Methods ; 147: 3-39, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29656078

RESUMO

Despite many high-profile successes, recombinant membrane protein production remains a technical challenge; it is still the case that many fewer membrane protein structures have been published than those of soluble proteins. However, progress is being made because empirical methods have been developed to produce the required quantity and quality of these challenging targets. This review focuses on the microbial expression systems that are a key source of recombinant prokaryotic and eukaryotic membrane proteins for structural studies. We provide an overview of the host strains, tags and promoters that, in our experience, are most likely to yield protein suitable for structural and functional characterization. We also catalogue the detergents used for solubilization and crystallization studies of these proteins. Here, we emphasize a combination of practical methods, not necessarily high-throughput, which can be implemented in any laboratory equipped for recombinant DNA technology and microbial cell culture.


Assuntos
Bactérias/genética , Proteínas de Membrana/biossíntese , Proteínas Recombinantes/biossíntese , Leveduras/genética , Plasmídeos , Regiões Promotoras Genéticas
6.
Angew Chem Int Ed Engl ; 58(22): 7395-7399, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934157

RESUMO

Despite growing research efforts on the preparation of (bio)functional liposomes, synthetic capsules cannot reach the densities of protein loading and the control over peptide display that is achieved by natural vesicles. Herein, a microbial platform for high-yield production of lipidic nanovesicles with clickable thiol moieties in their outer corona is reported. These nanovesicles show low size dispersity, are decorated with a dense, perfectly oriented, and customizable corona of transmembrane polypeptides. Furthermore, this approach enables encapsulation of soluble proteins into the nanovesicles. Due to the mild preparation and loading conditions (absence of organic solvents, pH gradients, or detergents) and their straightforward surface functionalization, which takes advantage of the diversity of commercially available maleimide derivatives, bacteria-based proteoliposomes are an attractive eco-friendly alternative that can outperform currently used liposomes.


Assuntos
Trifosfato de Adenosina/metabolismo , Escherichia coli/metabolismo , Lipídeos/química , Nanopartículas/química , Proteolipídeos/química , ATPases Translocadoras de Prótons/metabolismo , Compostos de Sulfidrila/química , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo
7.
Biochim Biophys Acta Biomembr ; 1859(6): 1124-1132, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28284722

RESUMO

Mitochondria, chloroplasts and photosynthetic bacteria are characterized by the presence of complex and intricate membrane systems. In contrast, non-photosynthetic bacteria lack membrane structures within their cytoplasm. However, large scale over-production of some membrane proteins, such as the fumarate reductase, the mannitol permease MtlA, the glycerol acyl transferase PlsB, the chemotaxis receptor Tsr or the ATP synthase subunit b, can induce the proliferation of intra cellular membranes (ICMs) in the cytoplasm of Escherichia coli. These ICMs are particularly rich in cardiolipin (CL). Here, we have studied the effect of CL in the generation of these membranous structures. We have deleted the three genes (clsA, clsB and clsC) responsible of CL biosynthesis in E. coli and analysed the effect of these mutations by fluorescent and electron microscopy and by lipid mass spectrometry. We have found that CL is essential in the formation of non-lamellar structures in the cytoplasm of E. coli cells. These results could help to understand the structuration of membranes in E. coli and other membrane organelles, such as mitochondria and ER.


Assuntos
Proteínas de Bactérias/metabolismo , Cardiolipinas/metabolismo , Retículo Endoplasmático/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/deficiência , Mitocôndrias/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/deficiência , Proteínas de Bactérias/genética , ATPases Bacterianas Próton-Translocadoras/genética , ATPases Bacterianas Próton-Translocadoras/metabolismo , Retículo Endoplasmático/ultraestrutura , Escherichia coli/ultraestrutura , Corantes Fluorescentes/química , Deleção de Genes , Expressão Gênica , Isoenzimas/deficiência , Isoenzimas/genética , Proteínas de Membrana/genética , Mitocôndrias/ultraestrutura , Imagem com Lapso de Tempo , Transferases (Outros Grupos de Fosfato Substituídos)/genética
8.
Biochim Biophys Acta ; 1818(3): 798-805, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22226924

RESUMO

Structural studies of membrane protein are still challenging due to several severe bottlenecks, the first being the overproduction of well-folded proteins. Several expression systems are often explored in parallel to fulfil this task, or alternately prokaryotic analogues are considered. Although, mitochondrial carriers play key roles in several metabolic pathways, only the structure of the ADP/ATP carrier purified from bovine heart mitochondria was determined so far. More generally, characterisations at the molecular level are restricted to ADP/ATP carrier or the uncoupling protein UCP1, another member of the mitochondrial carrier family, which is abundant in brown adipose tissues. Indeed, mitochondrial carriers have no prokaryotic homologues and very few efficient expression systems were described so far for these proteins. We succeeded in producing UCP1 using a cell free expression system based on E. coli extracts, in quantities that are compatible with structural approaches. The protein was synthesised in the presence of a fluorinated surfactant, which maintains the protein in a soluble form. Further biochemical and biophysical analysis such as size exclusion chromatography, circular dichroism and thermal stability, of the purified protein showed that the protein is non-aggregated, monodisperse and well-folded.


Assuntos
Hidrocarbonetos Fluorados/química , Canais Iônicos/biossíntese , Canais Iônicos/química , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Tensoativos/química , Animais , Bovinos , Sistema Livre de Células/química , Escherichia coli/química , Expressão Gênica , Canais Iônicos/genética , Canais Iônicos/isolamento & purificação , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/isolamento & purificação , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteína Desacopladora 1
9.
J Am Chem Soc ; 135(40): 15174-82, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24021091

RESUMO

The extraction of membrane proteins from their native environment by detergents is central to their biophysical characterization. Recent studies have emphasized that detergents may perturb the structure locally and modify the dynamics of membrane proteins. However, it remains challenging to determine whether these perturbations are negligible or could be responsible for misfolded conformations, altering the protein's function. In this work, we propose an original strategy combining functional studies and molecular simulations to address the physiological relevance of membrane protein structures obtained in the presence of detergents. We apply our strategy to a structure of isoform 2 of an uncoupling protein (UCP2) binding an inhibitor recently obtained in dodecylphosphocholine detergent micelles. Although this structure shares common traits with the ADP/ATP carrier, a member of the same protein family, its functional and biological significance remains to be addressed. In the present investigation, we demonstrate how dodecylphosphocholine severely alters the structure as well as the function of UCPs. The proposed original strategy opens new vistas for probing the physiological relevance of three-dimensional structures of membrane proteins obtained in non-native environments.


Assuntos
Detergentes/farmacologia , Canais Iônicos/química , Canais Iônicos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Conformação Proteica , Proteína Desacopladora 2
10.
Nat Commun ; 14(1): 2594, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147287

RESUMO

Brown adipose tissue expresses uncoupling protein 1 (UCP1), which dissipates energy as heat, making it a target for treating metabolic disorders. Here, we investigate how purine nucleotides inhibit respiration uncoupling by UCP1. Our molecular simulations predict that GDP and GTP bind UCP1 in the common substrate binding site in an upright orientation, where the base moiety interacts with conserved residues R92 and E191. We identify a triplet of uncharged residues, F88/I187/W281, forming hydrophobic contacts with nucleotides. In yeast spheroplast respiration assays, both I187A and W281A mutants increase the fatty acid-induced uncoupling activity of UCP1 and partially suppress the inhibition of UCP1 activity by nucleotides. The F88A/I187A/W281A triple mutant is overactivated by fatty acids even at high concentrations of purine nucleotides. In simulations, E191 and W281 interact with purine but not pyrimidine bases. These results provide a molecular understanding of the selective inhibition of UCP1 by purine nucleotides.


Assuntos
Canais Iônicos , Proteínas de Membrana , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Ácidos Graxos/metabolismo , Nucleotídeos de Purina/metabolismo , Tecido Adiposo Marrom/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
Acta Neuropathol ; 124(2): 199-208, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22526016

RESUMO

Several lines of evidence link mutations and deletions in mitochondrial DNA (mtDNA) and its maternal inheritance to neurodegenerative diseases in the elderly. Age-related mutations of mtDNA modulate the tricarboxylic cycle enzyme activity, mitochondrial oxidative phosphorylation capacity and oxidative stress response. To investigate the functional relevance of specific mtDNA polymorphisms of inbred mouse strains in the proteostasis regulation of the brain, we established novel mitochondrial congenic mouse lines of Alzheimer's disease (AD). We crossed females from inbred strains (FVB/N, AKR/J, NOD/LtJ) with C57BL/6 males for at least ten generations to gain specific mitochondrial conplastic strains with pure C57BL/6 nuclear backgrounds. We show that specific mtDNA polymorphisms originating from the inbred strains differentially influence mitochondrial energy metabolism, ATP production and ATP-driven microglial activity, resulting in alterations of cerebral ß-amyloid (Aß) accumulation. Our findings demonstrate that mtDNA-related increases in ATP levels and subsequently in microglial activity are directly linked to decreased Aß accumulation in vivo, implicating reduced mitochondrial function in microglia as a causative factor in the development of age-related cerebral proteopathies such as AD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , DNA Mitocondrial/genética , Polimorfismo Genético , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Animais , DNA Mitocondrial/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Microglia/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/genética
12.
Eur Biophys J ; 41(8): 675-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22847775

RESUMO

The uncoupling protein 1 (UCP1) is a mitochondrial protein that carries protons across the inner mitochondrial membrane. It has an important role in non-shivering thermogenesis, and recent evidence suggests its role in human adult metabolism. Using rapid solution exchange on solid supported membranes, we succeeded in measuring electrical currents generated by the transport activity of UCP1. The protein was purified from mouse brown adipose tissue, reconstituted in liposomes and absorbed on solid supported membranes. A fast pH jump activated the ion transport, and electrical signals could be recorded. The currents were characterized by a fast rise and a slow decay, were stable over time, inhibited by purine nucleotides and activated by fatty acids. This new assay permits direct observation of UCP1 activity in controlled cell-free conditions, and opens up new possibilities for UCP1 functional characterization and drug screening because of its robustness and its potential for automation.


Assuntos
Canais Iônicos/metabolismo , Lipossomos/metabolismo , Proteínas Mitocondriais/metabolismo , Prótons , Animais , Sistema Livre de Células , Ácidos Graxos/farmacologia , Concentração de Íons de Hidrogênio , Transporte de Íons , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Purinas/farmacologia , Proteína Desacopladora 1
13.
Methods Mol Biol ; 2507: 19-39, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35773575

RESUMO

Despite recent progresses in the use of eukaryotic expression system, production of membrane proteins for structural studies still relies on microbial expression systems. In this review, we provide protocols to achieve high level expression of membrane proteins in Escherichia coli, especially using the T7 RNA polymerase based expression system. From the design of the construct, the choice of the appropriate vector-host combination, the assessment of the bacterial fitness, to the selection of bacterial mutant adapted to the production of the target membrane protein, the chapter covers all necessary methods for a rapid optimization of a specific target membrane protein. In addition, we provide a protocol for membrane protein solubilization based on our recent analysis of the Protein Data Bank.


Assuntos
Escherichia coli , Proteínas de Membrana , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Recombinantes/metabolismo , Literatura de Revisão como Assunto
14.
FEBS J ; 288(9): 3024-3033, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33202085

RESUMO

Uncoupling protein 1 (UCP1) is found in the inner mitochondrial membrane of brown adipocytes. In the presence of long-chain fatty acids (LCFAs), UCP1 increases the proton conductance, which, in turn, increases fatty acid oxidation and energy release as heat. Atomic models of UCP1 and UCP2 have been generated based on the NMR backbone structure of UCP2 in dodecylphosphocholine (DPC), a detergent known to inactivate UCP1. Based on NMR titration experiments on UCP1 with LCFA, it has been proposed that K56 and K269 are crucial for LCFA binding and UCP1 activation. Given the numerous controversies on the use of DPC for structure-function analyses of membrane proteins, we revisited those UCP1 mutants in a more physiological context by expressing them in the mitochondria of Saccharomyces cerevisiae. Mitochondrial respiration, assayed on permeabilized spheroplasts, enables the determination of UCP1 activation and inhibition. The K56S, K269S, and K56S/K269S mutants did not display any default in activation, which shows that the NMR titration experiments in DPC detergent are not relevant to UCP1 function.


Assuntos
Adipócitos Marrons/ultraestrutura , Proteínas de Desacoplamento Mitocondrial/ultraestrutura , Conformação Proteica , Proteína Desacopladora 1/ultraestrutura , Adipócitos Marrons/metabolismo , Animais , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Humanos , Canais Iônicos/genética , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas de Desacoplamento Mitocondrial/química , Modelos Estruturais , Consumo de Oxigênio/genética , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Prótons , Ratos , Saccharomyces cerevisiae , Relação Estrutura-Atividade , Proteína Desacopladora 1/química , Proteína Desacopladora 1/genética
15.
FASEB J ; 22(1): 9-18, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17855623

RESUMO

Uncoupling protein-2 (UCP2) belongs to the mitochondrial carrier family and has been thought to be involved in suppressing mitochondrial ROS production through uncoupling mitochondrial respiration from ATP synthesis. However, we show here that loss of function of UCP2 does not result in a significant increase in ROS production or an increased propensity for cells to undergo senescence in culture. Instead, Ucp2-/- cells display enhanced proliferation associated with a metabolic switch from fatty acid oxidation to glucose metabolism. This metabolic switch requires the unrestricted availability of glucose, and Ucp2-/- cells more readily activate autophagy than wild-type cells when deprived of glucose. Altogether, these results suggest that UCP2 promotes mitochondrial fatty acid oxidation while limiting mitochondrial catabolism of pyruvate. The persistence of fatty acid catabolism in Ucp2+/+ cells during a proliferative response correlates with reduced cell proliferation and enhances resistance to glucose starvation-induced autophagy.


Assuntos
Proliferação de Células , Ácidos Graxos/metabolismo , Canais Iônicos/fisiologia , Proteínas Mitocondriais/fisiologia , Ácido Pirúvico/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Glicólise , Canais Iônicos/genética , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Oxirredução , Proteína Desacopladora 2
16.
Diabetes ; 56(4): 1042-50, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17395745

RESUMO

Uncoupling protein-2 (UCP2) is a mitochondrial membrane transporter expressed in white adipose tissue. We observed that circulating adiponectin levels and adiponectin gene expression in adipose tissue are reduced in UCP2-null mice. We studied whether mitochondrial activity and its control by UCP2 may regulate adiponectin gene expression. In 3T3-L1 cells, increasing UCP2 mitochondrial levels by adenoviral-mediated gene transfer induced adiponectin gene expression, whereas oligomycin and antimycin A, inhibitors of ATP synthesis and mitochondrial respiration, led to a downregulation. Reactive oxygen species (ROS) scavengers alleviated the repression of adiponectin gene expression caused by oligomycin or antimycin A. The action of ROS involves the transcription factor CHOP-10, the abundance of which was reduced in response to UCP2 and was induced by oligomycin. CHOP-10 inhibited adiponectin gene expression by interfering with the -117/-73 CCAAT/enhancer binding protein-binding region in the adiponectin gene promoter. Moreover, CHOP-10 levels were increased in adipose tissue from UCP2-null mice. Results indicate that the modulation of ROS levels by mitochondrial activity, and specifically as a consequence of the action of UCP2, controls adiponectin gene expression. This provides a physiological mechanism by which the adipose tissue energetic status may determine the extent of adiponectin release and influence systemic insulin sensitivity.


Assuntos
Tecido Adiposo/fisiologia , Regulação da Expressão Gênica , Canais Iônicos/genética , Proteínas Mitocondriais/genética , Espécies Reativas de Oxigênio/metabolismo , Células 3T3 , Adiponectina/metabolismo , Animais , Núcleo Celular/fisiologia , Técnicas de Transferência de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/fisiologia , Proteína Desacopladora 2
17.
Mitochondrion ; 42: 50-53, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29154852

RESUMO

Polycystic liver diseases (PCLDs) are autosomal dominant disorders. To date, 3 genes are known to be associated with the disease, SEC63 and PRKCSH and LRP5. Here, we report that mice deficient in the mitochondrial uncoupling protein 2 gene (Ucp2-/-) spontaneously developed PCLDs when they were over 12months old. Macroscopical observation, blood chemistry as well as histopathological analysis demonstrated the PCLDs found in Ucp2-/- mice were very similar to the findings in human PCLDs. This is the first report describing the gene encoding mitochondrial protein is causative for PCLDs. UCP2 may be a biomarker of the PCLDs in humans.


Assuntos
Cistos/genética , Hepatopatias/genética , Proteína Desacopladora 2/deficiência , Animais , Análise Química do Sangue , Modelos Animais de Doenças , Feminino , Histocitoquímica , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL
18.
Sci Rep ; 8(1): 8572, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872064

RESUMO

Membrane protein (MP) overproduction is one of the major bottlenecks in structural genomics and biotechnology. Despite the emergence of eukaryotic expression systems, bacteria remain a cost effective and powerful tool for protein production. The T7 RNA polymerase (T7RNAP)-based expression system is a successful and efficient expression system, which achieves high-level production of proteins. However some foreign MPs require a fine-tuning of their expression to minimize the toxicity associated with their production. Here we report a novel regulation mechanism for the T7 expression system. We have isolated two bacterial hosts, namely C44(DE3) and C45(DE3), harboring a stop codon in the T7RNAP gene, whose translation is under the control of the basal nonsense suppressive activity of the BL21(DE3) host. Evaluation of hosts with superfolder green fluorescent protein (sfGFP) revealed an unprecedented tighter control of transgene expression with a marked accumulation of the recombinant protein during stationary phase. Analysis of a collection of twenty MP fused to GFP showed an improved production yield and quality of several bacterial MPs and of one human monotopic MP. These mutant hosts are complementary to the other existing T7 hosts and will increase the versatility of the T7 expression system.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Virais/genética , Escherichia coli/metabolismo , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
19.
Methods Mol Biol ; 1432: 37-52, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27485328

RESUMO

Functional and structural studies on membrane proteins are limited by the difficulty to produce them in large amount and in a functional state. In this review, we provide protocols to achieve high-level expression of membrane proteins in Escherichia coli. The T7 RNA polymerase-based expression system is presented in detail and protocols to assess and improve its efficiency are discussed. Protocols to isolate either membrane or inclusion bodies and to perform an initial qualitative test to assess the solubility of the recombinant protein are also included.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Membrana/biossíntese , Proteínas Virais/metabolismo , Clonagem Molecular , Escherichia coli/genética , Guias como Assunto , Proteínas de Membrana/genética , Engenharia de Proteínas , Proteínas Recombinantes/biossíntese , Solubilidade
20.
Mitochondrion ; 30: 42-50, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27364833

RESUMO

Uncoupling protein (UCP) 2 is a mitochondrial transporter protein that plays various roles in cellular metabolism, including the glucose and lipid metabolism. Polymorphisms in UCP2 are associated with longevity in humans. In line with this, mice carrying the UCP2 transgene under the control of hypocretin promoter were reported to have an extended lifespan, while, conversely, mice deficient in Ucp2 demonstrated a significantly shorter lifespan. In this study, we examined the phenotype of aging in a large colony of Ucp2-deficient (Ucp2(-/-)) mice on the molecular level. We have found that the significantly shorter lives of Ucp2(-/-) mice is the result of an accelerated aging process throughout their entire lifespan. Thus, Ucp2(-/-) mice not only earlier gained sexual maturity, but also earlier progressed into an aging phenotype, reflected by a decrease in body weight, increased neutrophil numbers, and earlier emergence of spontaneous ulcerative dermatitis. Intriguingly, on the molecular level this acceleration in aging predominantly driven by increased levels of circulating IGF-1 in Ucp2(-/-) mice, hinting at a crosstalk between UCP2 and the classical Insulin/IGF-1 signaling aging pathway.


Assuntos
Envelhecimento , Proteína Desacopladora 2/metabolismo , Animais , Estudos Transversais , Feminino , Fator de Crescimento Insulin-Like I/análise , Estudos Longitudinais , Masculino , Camundongos , Camundongos Knockout , Soro/química , Proteína Desacopladora 2/deficiência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa