Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 187(8): 2010-2028.e30, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38569542

RESUMO

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.


Assuntos
Colite Ulcerativa , Colite , Animais , Humanos , Camundongos , Colite/metabolismo , Colite/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Hibridização in Situ Fluorescente/métodos , Inflamação/metabolismo , Inflamação/patologia , Comunicação Celular , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia
2.
Cell ; 180(1): 33-49.e22, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31813624

RESUMO

Gut-innervating nociceptor sensory neurons respond to noxious stimuli by initiating protective responses including pain and inflammation; however, their role in enteric infections is unclear. Here, we find that nociceptor neurons critically mediate host defense against the bacterial pathogen Salmonella enterica serovar Typhimurium (STm). Dorsal root ganglia nociceptors protect against STm colonization, invasion, and dissemination from the gut. Nociceptors regulate the density of microfold (M) cells in ileum Peyer's patch (PP) follicle-associated epithelia (FAE) to limit entry points for STm invasion. Downstream of M cells, nociceptors maintain levels of segmentous filamentous bacteria (SFB), a gut microbe residing on ileum villi and PP FAE that mediates resistance to STm infection. TRPV1+ nociceptors directly respond to STm by releasing calcitonin gene-related peptide (CGRP), a neuropeptide that modulates M cells and SFB levels to protect against Salmonella infection. These findings reveal a major role for nociceptor neurons in sensing and defending against enteric pathogens.


Assuntos
Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Nociceptores/fisiologia , Animais , Epitélio/metabolismo , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/microbiologia , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/metabolismo , Nódulos Linfáticos Agregados/inervação , Nódulos Linfáticos Agregados/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia
3.
Immunity ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906145

RESUMO

Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2'3'-cyclic GMP-AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.

4.
J Autoimmun ; 119: 102612, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33611150

RESUMO

We evaluated the role of the thymus in development of multi-organ autoimmunity in human immune system (HIS) mice. T cells were essential for disease development and the same T cell clones with varying phenotypes infiltrated multiple tissues. De novo-generated hematopoietic stem cell (HSC)-derived T cells were the major disease drivers, though thymocytes pre-existing in grafted human thymi contributed if not first depleted. HIS mice with a native mouse thymus developed disease earlier than thymectomized mice with a thymocyte-depleted human thymus graft. Defective structure in the native mouse thymus was associated with impaired negative selection of thymocytes expressing a transgenic TCR recognizing a self-antigen. Disease developed without direct recognition of antigens on recipient mouse MHC. While human thymus grafts had normal structure and negative selection, failure to tolerize human T cells recognizing mouse antigens presented on HLA molecules may explain eventual disease development. These new insights have implications for human autoimmunity and suggest methods of avoiding autoimmunity in next-generation HIS mice.


Assuntos
Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Autoimunidade , Suscetibilidade a Doenças/imunologia , Timo/imunologia , Timo/metabolismo , Animais , Antígenos , Doenças Autoimunes/patologia , Biomarcadores , Seleção Clonal Mediada por Antígeno/imunologia , Modelos Animais de Doenças , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Imunofenotipagem , Linfopoese/genética , Linfopoese/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
5.
Mol Ther ; 25(4): 989-1002, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28215994

RESUMO

Recombinant, Escherichia coli-derived outer membrane vesicles (rOMVs), which display heterologous protein subunits, have potential as a vaccine adjuvant platform. One drawback to rOMVs is their lipopolysaccharide (LPS) content, limiting their translatability to the clinic due to potential adverse effects. Here, we explore a unique rOMV construct with structurally remodeled lipids containing only the lipid IVa portion of LPS, which does not stimulate human TLR4. The rOMVs are derived from a genetically engineered B strain of E. coli, ClearColi, which produces lipid IVa, and which was further engineered in our laboratory to hypervesiculate and make rOMVs. We report that rOMVs derived from this lipid IVa strain have substantially attenuated pyrogenicity yet retain high levels of immunogenicity, promote dendritic cell maturation, and generate a balanced Th1/Th2 humoral response. Additionally, an influenza A virus matrix 2 protein-based antigen displayed on these rOMVs resulted in 100% survival against a lethal challenge with two influenza A virus strains (H1N1 and H3N2) in mice with different genetic backgrounds (BALB/c, C57BL/6, and DBA/2J). Additionally, a two-log reduction of lung viral titer was achieved in a ferret model of influenza infection with human pandemic H1N1. The rOMVs reported herein represent a potentially safe and simple subunit vaccine delivery platform.


Assuntos
Escherichia coli/imunologia , Vesículas Extracelulares/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Escherichia coli/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo
6.
Transpl Int ; 29(8): 930-40, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27112509

RESUMO

MyD88 signaling directly promotes T-cell survival and is required for optimal T-cell responses to pathogens. To examine the role of T-cell-intrinsic MyD88 signals in transplantation, we studied mice with targeted T-cell-specific MyD88 deletion. Contrary to expectations, we found that these mice were relatively resistant to prolongation of graft survival with anti-CD154 plus rapamycin in a class II-mismatched system. To specifically examine the role of MyD88 in Tregs, we created a Treg-specific MyD88-deficient mouse. Transplant studies in these animals replicated the findings observed with a global T-cell MyD88 knockout. Surprisingly, given the role of MyD88 in conventional T-cell survival, we found no defect in the survival of MyD88-deficient Tregs in vitro or in the transplant recipients and also observed intact cell homing and expression of Treg effector molecules. MyD88-deficient Tregs also fail to protect allogeneic bone marrow transplant recipients from chronic graft-versus-host disease, confirming the observations of defective regulation seen in a solid organ transplant system. Together, our data define MyD88 as having a divergent requirement for cell survival in non-Tregs and Tregs, and a yet-to-be defined survival-independent requirement for Treg function during the response to alloantigen.


Assuntos
Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Doença Enxerto-Hospedeiro , Fator 88 de Diferenciação Mieloide/metabolismo , Linfócitos T Reguladores/citologia , Animais , Transplante de Medula Óssea , Ligante de CD40/metabolismo , Sobrevivência Celular , Feminino , Citometria de Fluxo , Deleção de Genes , Transplante de Coração , Inflamação , Isoantígenos , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais , Sirolimo/administração & dosagem , Sirolimo/metabolismo , Pele/patologia , Transplante de Pele , Transplante Homólogo
7.
bioRxiv ; 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38105934

RESUMO

The cerebrospinal fluid (CSF) serves various roles in the developing central nervous system (CNS), from neurogenesis to lifelong cognitive functions. Changes in CSF composition due to inflammation can impact brain function. We recently identified an abnormal cytokine signature in embryonic CSF (eCSF) following maternal immune activation (MIA), a mouse model of autism spectrum disorder (ASD). We hypothesized that MIA leads to other alterations in eCSF composition and employed untargeted metabolomics to profile changes in the eCSF metabolome in mice after inducing MIA with polyI:C. We report these data here as a resource, include a comprehensive MS1 and MS2 reference dataset, and present additional datasets comparing two mouse strains (CD-1 and C57Bl/6) and two developmental time points (E12.5 and E14.5). Targeted metabolomics further validated changes upon MIA. We show a significant elevation of glucocorticoids and kynurenine pathway related metabolites. Both pathways are relevant for suppressing inflammation or could be informative as disease biomarkers. Our resource should inform future mechanistic studies regarding the etiology of MIA neuropathology and roles and contributions of eCSF metabolites to brain development.

8.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214800

RESUMO

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used MERFISH to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations; charted their spatial organization; and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.

9.
Biomed Res Int ; 2022: 5058121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309178

RESUMO

Chronic obstructive pulmonary disease (COPD) is pulmonary emphysema characterized by blockage in the airflow resulting in the long-term breathing problem, hence a major cause of mortality worldwide. Excessive generation of free radicals and the development of chronic inflammation are the major two episodes underlying the pathogenesis of COPD. Currently used drugs targeting these episodes including anti-inflammatory, antioxidants, and corticosteroids are unsafe, require high doses, and pose serious side effects. Nanomaterial-conjugated drugs have shown promising therapeutic potential against different respiratory diseases as they are required in small quantities which lower overall treatment costs and can be effectively targeted to diseased tissue microenvironment hence having minimal side effects. Poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) are safe as their breakdown products are easily metabolized in the body. Drugs loaded on the PLGA NPs have been shown to be promising agents as anticancer, antimicrobial, antioxidants, and anti-inflammatory. Surface modification of PLGA NPs can further improve their mechanical properties, drug loading potential, and pharmacological activities. In the present review, we have presented a brief insight into the pathophysiological mechanism underlying COPD and highlighted the role, potential, and current status of PLGA NPs loaded with drugs in the therapy of COPD.


Assuntos
Nanopartículas , Doença Pulmonar Obstrutiva Crônica , Antioxidantes/uso terapêutico , Portadores de Fármacos , Glicóis , Humanos , Ácido Láctico , Nanopartículas/uso terapêutico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
10.
J Colloid Interface Sci ; 578: 522-532, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540551

RESUMO

Recombinantly engineered bacterial outer membrane vesicles (OMVs) are promising vaccine delivery vehicles. The diversity of exogenous antigens delivered by OMVs can be enhanced by induced fusion of OMV populations. To date there are no reports of induced fusion of bacterial OMVs. Here we measure the pH and salt-induced aggregation and fusion of OMVs and analyze the processes against the Derjaguin-Landau-Verwey-Overbeek (DLVO) colloidal stability model. Vesicle aggregation and fusion kinetics were investigated for OMVs isolated from native E. coli (Nissle 1917) and lipopolysaccharide (LPS) modified E. coli (ClearColi) strains to evaluate the effect of lipid type on vesicle aggregation and fusion. Electrolytes and low pHs induced OMV aggregation for both native and modified LPS constructs, approaching a calculated fusion efficiency of ~25% (i.e. ~1/4 of collision events lead to fusion). However, high fusion efficiency was achieved for Nissle OMVs solely with decreased pH as opposed to a combination of low pH and increased divalent counterion concentration for ClearColi OMVs. The lipid composition of the OMVs from Nissle negatively impacted fusion in the presence of electrolytes, causing higher deviations from DLVO-predicted critical coagulation concentrations with monovalent counterions. The outcome of the work is a defined set of conditions under which investigators can induce OMVs to fuse and make various combinations of vesicle compositions.


Assuntos
Membrana Externa Bacteriana , Escherichia coli , Antígenos , Proteínas da Membrana Bacteriana Externa , Cinética , Lipopolissacarídeos
11.
J Clin Invest ; 129(6): 2446-2462, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30920391

RESUMO

We investigated human T-cell repertoire formation using high throughput TCRß CDR3 sequencing in immunodeficient mice receiving human hematopoietic stem cells (HSCs) and human thymus grafts. Replicate humanized mice generated diverse and highly divergent repertoires. Repertoire narrowing and increased CDR3ß sharing was observed during thymocyte selection. While hydrophobicity analysis implicated self-peptides in positive selection of the overall repertoire, positive selection favored shorter shared sequences that had reduced hydrophobicity at positions 6 and 7 of CDR3ßs, suggesting weaker interactions with self-peptides than unshared sequences, possibly allowing escape from negative selection. Sharing was similar between autologous and allogeneic thymi and occurred between different cell subsets. Shared sequences were enriched for allo-crossreactive CDR3ßs and for Type 1 diabetes-associated autoreactive CDR3ßs. Single-cell TCR-sequencing showed increased sharing of CDR3αs compared to CDR3ßs between mice. Our data collectively implicate preferential positive selection for shared human CDR3ßs that are highly cross-reactive. While previous studies suggested a role for recombination bias in producing "public" sequences in mice, our study is the first to demonstrate a role for thymic selection. Our results implicate positive selection for promiscuous TCRß sequences that likely evade negative selection, due to their low affinity for self-ligands, in the abundance of "public" human TCRß sequences.


Assuntos
Regiões Determinantes de Complementaridade , Receptores de Antígenos de Linfócitos T alfa-beta , Timócitos/imunologia , Timo/imunologia , Animais , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Reações Cruzadas , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Timócitos/citologia , Timo/citologia
12.
J Chromatogr Sci ; 40(5): 297-303, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12049159

RESUMO

An easy, inexpensive, and accurate method for the analysis of synthetic dyes by means of ion-pair thin-layer chromatography (IPTLC) on mixed sorbent phases containing silica gel G and barium sulfate in an aqueous ethanol system is studied. The effect of the composition of the sorbent phases has a major effect on the hundred-fold relative migration rate, as also does the effect of the ion-pairing reagent as the impregnant. Compact and sharp spot application yields very good binary and ternary separations and enables their clear identification. IPTLC has better separations on mixed sorbent phases, which are not possible on plain mixed phases in thin-layer chromatography. The method can be applied for the trace analysis of synthetic dyes in various natural and synthetic samples.

13.
Indian J Surg ; 75(1): 54-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24426387

RESUMO

Cavernous haemangioma is a rare disorder of the spleen with fewer than 100 cases reported [1]. Spleen may have an unusual degree of mobility and occupy an atypical location in less than 0.2 % of all the patients [2] Wandering spleen has been associated with incomplete fusion or even absence of gastrosplenic and lienorenal ligaments [3]. A 36-year-old woman presented with a six-month history of pain in the left hypochondrium and a massive splenomegaly. Ultrasonography, Doppler studies, and computed tomography were performed. Ultrasonography showed a large heterogeneous solid cystic mass, measuring 11.2 cm × 10.6 cm, located in the pelvis. Thin soft tissue connecting this mass to spleen noticed. Spleen was malrotated & in left lumbar fossa. Doppler studies shows prominent vessels at the periphery of the mass with high velocity external flow and scanty vascularity at the centre, probably suggesting haemangioma. Contrast-enhanced computed tomography (CECT) of the abdomen showed spleen in left lumbar region with a large heterogeneous, predominantly cystic mass lesion measuring 11.2 x 10.6 cm seen arising from diaphragmatic surface of lower pole of the spleen (Fig. 1), findings were suggestive of wandering spleen with a haemangioma or a hydatid cyst. The patient was explored by a left para-median incision under general anaesthesia. Peroperatively, there was a malrotated enlarged spleen with a large solid lesion confined to the lower half of the spleen (Fig. 2). Gastrosplenic ligament was not visualized. Total splenectomy was done after ligating the splenic artery as the main splenic artery was supplying the mass.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa