Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 13(1): 37, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429796

RESUMO

BACKGROUND: While genome-wide association studies (GWAS) of multiple myeloma (MM) have identified variants at 23 regions influencing risk, the genes underlying these associations are largely unknown. To identify candidate causal genes at these regions and search for novel risk regions, we performed a multi-tissue transcriptome-wide association study (TWAS). RESULTS: GWAS data on 7319 MM cases and 234,385 controls was integrated with Genotype-Tissue Expression Project (GTEx) data assayed in 48 tissues (sample sizes, N = 80-491), including lymphocyte cell lines and whole blood, to predict gene expression. We identified 108 genes at 13 independent regions associated with MM risk, all of which were in 1 Mb of known MM GWAS risk variants. Of these, 94 genes, located in eight regions, had not previously been considered as a candidate gene for that locus. CONCLUSIONS: Our findings highlight the value of leveraging expression data from multiple tissues to identify candidate genes responsible for GWAS associations which provide insight into MM tumorigenesis. Among the genes identified, a number have plausible roles in MM biology, notably APOBEC3C, APOBEC3H, APOBEC3D, APOBEC3F, APOBEC3G, or have been previously implicated in other malignancies. The genes identified in this TWAS can be explored for follow-up and validation to further understand their role in MM biology.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Mieloma Múltiplo/genética , Transcriptoma/genética , Desaminase APOBEC-3G/genética , Aminoidrolases/genética , Citidina Desaminase/genética , Citosina Desaminase/genética , Perfilação da Expressão Gênica , Genótipo , Humanos , Mieloma Múltiplo/patologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
2.
Syst Biol ; 68(1): 1-18, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788398

RESUMO

Time-calibrated phylogenies of living species have been widely used to study the tempo and mode of species diversification. However, it is increasingly clear that inferences about species diversification-extinction rates in particular-can be unreliable in the absence of paleontological data. We introduce a general framework based on the fossilized birth-death process for studying speciation-extinction dynamics on phylogenies of extant and extinct species. The model assumes that phylogenies can be modeled as a mixture of distinct evolutionary rate regimes and that a hierarchical Poisson process governs the number of such rate regimes across a tree. We implemented the model in BAMM, a computational framework that uses reversible jump Markov chain Monte Carlo to simulate a posterior distribution of macroevolutionary rate regimes conditional on the branching times and topology of a phylogeny. The implementation, we describe can be applied to paleontological phylogenies, neontological phylogenies, and to phylogenies that include both extant and extinct taxa. We evaluate performance of the model on data sets simulated under a range of diversification scenarios. We find that speciation rates are reliably inferred in the absence of paleontological data. However, the inclusion of fossil observations substantially increases the accuracy of extinction rate estimates. We demonstrate that inferences are relatively robust to at least some violations of model assumptions, including heterogeneity in preservation rates and misspecification of the number of occurrences in paleontological data sets.


Assuntos
Fósseis , Modelos Biológicos , Filogenia , Animais , Biodiversidade , Simulação por Computador , Especiação Genética , Tempo
3.
Ann Hum Genet ; 83(4): 231-238, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30768683

RESUMO

Genomic regions of homozygosity (ROH), detectable in outbred populations, have been implicated as determinants of inherited risk. To examine whether ROH is associated with risk of multiple myeloma (MM), we performed whole-genome homozygosity analysis using single-nucleotide polymorphism genotype data from 2,282 MM cases and 5,197 controls, with replication in an additional 878 MM cases and 7,083 controls. Globally, the distribution of ROH between cases and controls was not significantly different. However, one ROH at chromosome 9q21, harboring the B-cell transcription factor gene KLF9, showed evidence of a consistent association and may therefore warrant further investigation as a candidate risk factor for MM. Overall, our analysis provides little support for a homozygosity signature being a significant factor in MM risk.


Assuntos
Alelos , Estudos de Associação Genética , Predisposição Genética para Doença , Homozigoto , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Idoso , Estudos de Casos e Controles , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Medição de Risco , Fatores de Risco
4.
Syst Biol ; 66(4): 477-498, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334223

RESUMO

Bayesian analysis of macroevolutionary mixtures (BAMM) is a statistical framework that uses reversible jump Markov chain Monte Carlo to infer complex macroevolutionary dynamics of diversification and phenotypic evolution on phylogenetic trees. A recent article by Moore et al. (MEA) reported a number of theoretical and practical concerns with BAMM. Major claims from MEA are that (i) BAMM's likelihood function is incorrect, because it does not account for unobserved rate shifts; (ii) the posterior distribution on the number of rate shifts is overly sensitive to the prior; and (iii) diversification rate estimates from BAMM are unreliable. Here, we show that these and other conclusions from MEA are generally incorrect or unjustified. We first demonstrate that MEA's numerical assessment of the BAMM likelihood is compromised by their use of an invalid likelihood function. We then show that "unobserved rate shifts" appear to be irrelevant for biologically plausible parameterizations of the diversification process. We find that the purportedly extreme prior sensitivity reported by MEA cannot be replicated with standard usage of BAMM v2.5, or with any other version when conventional Bayesian model selection is performed. Finally, we demonstrate that BAMM performs very well at estimating diversification rate variation across the ${\sim}$20% of simulated trees in MEA's data set for which it is theoretically possible to infer rate shifts with confidence. Due to ascertainment bias, the remaining 80% of their purportedly variable-rate phylogenies are statistically indistinguishable from those produced by a constant-rate birth-death process and were thus poorly suited for the summary statistics used in their performance assessment. We demonstrate that inferences about diversification rates have been accurate and consistent across all major previous releases of the BAMM software. We recognize an acute need to address the theoretical foundations of rate-shift models for phylogenetic trees, and we expect BAMM and other modeling frameworks to improve in response to mathematical and computational innovations. However, we remain optimistic that that the imperfect tools currently available to comparative biologists have provided and will continue to provide important insights into the diversification of life on Earth.


Assuntos
Classificação/métodos , Modelos Biológicos , Filogenia , Teorema de Bayes , Biodiversidade , Interpretação Estatística de Dados , Funções Verossimilhança , Software
5.
Syst Biol ; 65(5): 737-58, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27288479

RESUMO

Phylogenetic tree shape varies as the evolutionary processes affecting a clade change over time. In this study, we examined an empirical phylogeny of fossil tetrapods during several time intervals, and studied how temporal constraints manifested in patterns of tree imbalance and character change. The results indicate that the impact of temporal constraints on tree shape is minimal and highlights the stability through time of the reference tetrapod phylogeny. Unexpected values of imbalance for Mississippian and Pennsylvanian time slices strongly support the hypothesis that the Carboniferous was a period of explosive tetrapod radiation. Several significant diversification shifts take place in the Mississippian and underpin increased terrestrialization among the earliest limbed vertebrates. Character incompatibility is relatively high at the beginning of tetrapod history, but quickly decreases to a relatively stable lower level, relative to a null distribution based on constant rates of character change. This implies that basal tetrapods had high, but declining, rates of homoplasy early in their evolutionary history, although the origin of Lissamphibia is an exception to this trend. The time slice approach is a powerful method of phylogenetic analysis and a useful tool for assessing the impact of combining extinct and extant taxa in phylogenetic analyses of large and speciose clades.


Assuntos
Classificação , Fósseis , Filogenia , Anfíbios/classificação , Animais , Evolução Biológica , Especiação Genética
6.
Br J Cancer ; 115(2): 266-72, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27336604

RESUMO

BACKGROUND: Observational studies have associated adiposity with an increased risk of colorectal cancer (CRC). However, such studies do not establish a causal relationship. To minimise bias from confounding we performed a Mendelian randomisation (MR) analysis to examine the relationship between adiposity and CRC. METHODS: We used SNPs associated with adult body mass index (BMI), waist-hip ratio (WHR), childhood obesity and birth weight as instrumental variables in a MR analysis of 9254 CRC cases and 18 386 controls. RESULTS: In the MR analysis, the odds ratios (ORs) of CRC risk per unit increase in BMI, WHR and childhood obesity were 1.23 (95% CI: 1.02-1.49, P=0.033), 1.59 (95% CI: 1.08-2.34, P=0.019) and 1.07 (95% CI: 1.03-1.13, P=0.018), respectively. There was no evidence for association between birth weight and CRC (OR=1.22, 95% CI: 0.89-1.67, P=0.22). Combining these data with a concurrent MR-based analysis for BMI and WHR with CRC risk (totalling to 18 190 cases, 27 617 controls) provided increased support, ORs for BMI and WHR were 1.26 (95% CI: 1.10-1.44, P=7.7 × 10(-4)) and 1.40 (95% CI: 1.14-1.72, P=1.2 × 10(-3)), respectively. CONCLUSIONS: These data provide further evidence for a strong causal relationship between adiposity and the risk of developing CRC highlighting the urgent need for prevention and treatment of adiposity.


Assuntos
Adiposidade/genética , Neoplasias Colorretais/complicações , Adulto , Neoplasias Colorretais/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Distribuição Aleatória
7.
Br J Cancer ; 113(10): 1512-8, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26461055

RESUMO

BACKGROUND: The increasing incidence of testicular germ cell tumour (TGCT) combined with its strong heritable basis suggests that stratified screening for the early detection of TGCT may be clinically useful. We modelled the efficiency of such a personalised screening approach, based on genetic risk profiling in combination with other diagnostic tools. METHODS: We compared the number of cases potentially detectable in the population under a number of screening models. The polygenic risk scoring (PRS) model was assumed to have a log-normal relative risk distribution across the 19 currently known TGCT susceptibility variants. The diagnostic performance of testicular biopsy and non-invasive semen analysis was also assessed, within a simulated combined screening programme. RESULTS: The area under the curve for the TGCT PRS model was 0.72 with individuals in the top 1% of the PRS having a nine-fold increased TGCT risk compared with the population median. Results from population-screening simulations only achieved a maximal positive predictive value (PPV) of 60%, highlighting broader clinical factors that challenge such strategies, not least the rare nature of TGCT. In terms of future improvements, heritability estimates suggest that a significant number of additional genetic risk factors for TGCT remain to be discovered, identification of which would potentially yield improvement of the PPV to 80-90%. CONCLUSIONS: While personalised screening models may offer enhanced TGCT risk discrimination, presently the case for population-level testing is not compelling. However, future advances, such as more routine generation of whole genome data is likely to alter the landscape. More targeted screening programs may plausibly then offer clinical benefit, particularly given the significant survivorship issues associated with the successful treatment of TGCT.


Assuntos
Detecção Precoce de Câncer/métodos , Herança Multifatorial , Neoplasias Embrionárias de Células Germinativas/genética , Medicina de Precisão/métodos , Neoplasias Testiculares/genética , Biópsia , Predisposição Genética para Doença , Humanos , Masculino , Modelos Genéticos , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Modelagem Computacional Específica para o Paciente , Valor Preditivo dos Testes , Análise do Sêmen/métodos , Neoplasias Testiculares/diagnóstico
8.
Proc Natl Acad Sci U S A ; 109(46): 18857-61, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23112149

RESUMO

The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.


Assuntos
Dinossauros , Ecossistema , Extinção Biológica , Fósseis , Planetas Menores , Animais , América do Norte
9.
Proc Biol Sci ; 281(1787)2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24870044

RESUMO

Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (=pygostylians) from the Jehol Biota (≈125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem.


Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Fósseis/anatomia & histologia , Animais , Evolução Biológica , Osso e Ossos/anatomia & histologia , Ecossistema , Comportamento Alimentar
10.
Phys Rev Lett ; 110(14): 148105, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25167042

RESUMO

DNA supercoiling plays a role in genetic control by imposing torsional stress. This can induce writhe, which changes the global shape of the DNA. We have used atomistic molecular dynamics simulations to partition the free energy changes driving the writhing and unwrithing transitions in supercoiled minicircle DNA. The calculations show that while writhing is energetically driven, the unwrithing transition occurs because the circular state has a higher configurational entropy than the plectoneme. Writhing improves the van der Waals interactions between stacked bases, but can be suppressed by electrostatic repulsion within the negatively charged backbone strands in low salt conditions where electrostatic screening is poor. The free energy difference between circular and plectonemic DNA is determined by such a delicate balance of opposing thermodynamic terms that any perturbation in the environment, such as a change in salt concentration, can be sufficient to convert between these two states. This switchable behavior provides a mechanism for supercoiled DNA to store and communicate biological information physically as well as chemically.


Assuntos
DNA Super-Helicoidal/química , DNA/química , DNA Bacteriano/química , Entropia , Modelos Químicos , Simulação de Dinâmica Molecular , Mycoplasma genitalium/química , Mycoplasma genitalium/genética , Conformação de Ácido Nucleico , Eletricidade Estática , Termodinâmica
12.
Anat Rec (Hoboken) ; 305(7): 1563-1591, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34813153

RESUMO

Of the more than 6,000 members of the most speciose avian clade, Passeriformes (perching birds), only the five species of dippers (Cinclidae, Cinclus) use their wings to swim underwater. Among nonpasserine wing-propelled divers (alcids, diving petrels, penguins, and plotopterids), convergent evolution of morphological characteristics related to this highly derived method of locomotion have been well-documented, suggesting that the demands of this behavior exert strong selective pressure. However, despite their unique anatomical attributes, dippers have been the focus of comparatively few studies and potential convergence between dippers and nonpasseriform wing-propelled divers has not been previously examined. In this study, a suite of characteristics that are shared among many wing-propelled diving birds were identified and the distribution of those characteristics across representatives of all clades of extant and extinct wing-propelled divers were evaluated to assess convergence. Putatively convergent characteristics were drawn from a relatively wide range of sources including osteology, myology, endocranial anatomy, integument, and ethology. Comparisons reveal that whereas nonpasseriform wing-propelled divers do in fact share some anatomical characteristics putatively associated with the biomechanics of underwater "flight", dippers have evolved this highly derived method of locomotion without converging on the majority of concomitant changes observed in other taxa. Changes in the flight musculature and feathers, reduction of the keratin bounded external nares and an increase in subcutaneous fat are shared with other wing-propelled diving birds, but endocranial anatomy shows no significant shifts and osteological modifications are limited. Muscular and integumentary novelties may precede skeletal and neuroendocranial morphology in the acquisition of this novel locomotory mode, with implications for understanding potential biases in the fossil record of other such transitions. Thus, dippers represent an example of a highly derived and complex behavioral convergence that is not fully associated with the anatomical changes observed in other wing-propelled divers, perhaps owing to the relative recency of their divergence from nondiving passeriforms.


Assuntos
Aves Canoras , Animais , Evolução Biológica , Voo Animal , Fósseis , Osteologia , Natação , Asas de Animais/anatomia & histologia
14.
Naturwissenschaften ; 97(12): 1117-21, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21060984

RESUMO

Venom delivery systems occur in a wide range of extant and fossil vertebrates and are primarily based on oral adaptations. Teeth range from unmodified (Komodo dragons) to highly specialized fangs similar to hypodermic needles (protero- and solenoglyphous snakes). Developmental biologists have documented evidence for an infolding pathway of fang evolution, where the groove folds over to create the more derived condition. However, the oldest known members of venomous clades retain the same condition as their extant relatives, resulting in no fossil evidence for the transition. Based on a comparison of previously known specimens with newly discovered teeth from North Carolina, we describe a new species of the Late Triassic archosauriform Uatchitodon and provide detailed analyses that provide evidence for both venom conduction and document a complete structural series from shallow grooves to fully enclosed tubular canals. While known only from teeth, Uatchitodon is highly diagnostic in possessing compound serrations and for having two venom canals on each tooth in the dentition. Further, although not a snake, Uatchitodon sheds light on the evolutionary trajectory of venom delivery systems in amniotes and provide solid evidence for venom conduction in archosaur-line diapsids.


Assuntos
Evolução Biológica , Répteis/anatomia & histologia , Dente/anatomia & histologia , Peçonhas , Animais , Fósseis , Microscopia Eletrônica de Varredura , Répteis/fisiologia , Dente/ultraestrutura
15.
Nat Commun ; 10(1): 213, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631080

RESUMO

The original version of this Article contained an error in the spelling of a member of the PRACTICAL Consortium, Manuela Gago-Dominguez, which was incorrectly given as Manuela Gago Dominguez. This has now been corrected in both the PDF and HTML versions of the Article. Furthermore, in the original HTML version of this Article, the order of authors within the author list was incorrect. The PRACTICAL consortium was incorrectly listed after Richard S. Houlston and should have been listed after Nora Pashayan. This error has been corrected in the HTML version of the Article; the PDF version was correct at the time of publication.

16.
Nat Commun ; 9(1): 3707, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213928

RESUMO

Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight into the biological basis of MM.


Assuntos
Predisposição Genética para Doença , Mieloma Múltiplo/genética , Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Cromatina/química , Imunoprecipitação da Cromatina , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Regiões Promotoras Genéticas , Controle de Qualidade , Locos de Características Quantitativas , Risco , População Branca/genética
17.
Blood Cancer J ; 9(1): 1, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30602759

RESUMO

The clustering of different types of B-cell malignancies in families raises the possibility of shared aetiology. To examine this, we performed cross-trait linkage disequilibrium (LD)-score regression of multiple myeloma (MM) and chronic lymphocytic leukaemia (CLL) genome-wide association study (GWAS) data sets, totalling 11,734 cases and 29,468 controls. A significant genetic correlation between these two B-cell malignancies was shown (Rg = 0.4, P = 0.0046). Furthermore, four of the 45 known CLL risk loci were shown to associate with MM risk and five of the 23 known MM risk loci associate with CLL risk. By integrating eQTL, Hi-C and ChIP-seq data, we show that these pleiotropic risk loci are enriched for B-cell regulatory elements and implicate B-cell developmental genes. These data identify shared biological pathways influencing the development of CLL and, MM and further our understanding of the aetiological basis of these B-cell malignancies.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Leucemia Linfocítica Crônica de Células B/genética , Mieloma Múltiplo/genética , Alelos , Estudos de Casos e Controles , Bases de Dados Genéticas , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
18.
Ecol Evol ; 7(2): 550-560, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28116052

RESUMO

Behavioral shifts can initiate morphological evolution by pushing lineages into new adaptive zones. This has primarily been examined in ecological behaviors, such as foraging, but social behaviors may also alter morphology. Swallows and martins (Hirundinidae) are aerial insectivores that exhibit a range of social behaviors, from solitary to colonial breeding and foraging. Using a well-resolved phylogenetic tree, a database of social behaviors, and morphological measurements, we ask how shifts from solitary to social breeding and foraging have affected morphological evolution in the Hirundinidae. Using a threshold model of discrete state evolution, we find that shifts in both breeding and foraging social behavior are common across the phylogeny of swallows. Solitary swallows have highly variable morphology, while social swallows show much less absolute variance in all morphological traits. Metrics of convergence based on both the trajectory of social lineages through morphospace and the overall morphological distance between social species scaled by their phylogenetic distance indicate strong convergence in social swallows, especially socially foraging swallows. Smaller physical traits generally observed in social species suggest that social species benefit from a distinctive flight style, likely increasing maneuverability and foraging success and reducing in-flight collisions within large flocks. These results highlight the importance of sociality in species evolution, a link that had previously been examined only in eusocial insects and primates.

19.
Evolution ; 71(3): 633-649, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28075012

RESUMO

Convergence is widely regarded as compelling evidence for adaptation, often being portrayed as evidence that phenotypic outcomes are predictable from ecology, overriding contingencies of history. However, repeated outcomes may be very rare unless adaptive landscapes are simple, structured by strong ecological and functional constraints. One such constraint may be a limitation on body size because performance often scales with size, allowing species to adapt to challenging functions by modifying only size. When size is constrained, species might adapt by changing shape; convergent shapes may therefore be common when size is limiting and functions are challenging. We examine the roles of size and diet as determinants of jaw shape in Sciuridae. As expected, size and diet have significant interdependent effects on jaw shape and ecomorphological convergence is rare, typically involving demanding diets and limiting sizes. More surprising is morphological without ecological convergence, which is equally common between and within dietary classes. Those cases, like rare ecomorphological convergence, may be consequences of evolving on an adaptive landscape shaped by many-to-many relationships between ecology and function, many-to-one relationships between form and performance, and one-to-many relationships between functionally versatile morphologies and ecology. On complex adaptive landscapes, ecological selection can yield different outcomes.


Assuntos
Evolução Biológica , Tamanho Corporal , Dieta , Arcada Osseodentária/anatomia & histologia , Sciuridae/anatomia & histologia , Sciuridae/fisiologia , Animais , Comportamento Alimentar , Filogenia
20.
J Chem Theory Comput ; 13(4): 1539-1555, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28029797

RESUMO

A Monte Carlo code applied to the cgDNA coarse-grain rigid-base model of B-form double-stranded DNA is used to predict a sequence-averaged persistence length of lF = 53.5 nm in the sense of Flory, and of lp = 160 bp or 53.5 nm in the sense of apparent tangent-tangent correlation decay. These estimates are slightly higher than the consensus experimental values of 150 bp or 50 nm, but we believe the agreement to be good given that the cgDNA model is itself parametrized from molecular dynamics simulations of short fragments of length 10-20 bp, with no explicit fit to persistence length. Our Monte Carlo simulations further predict that there can be substantial dependence of persistence lengths on the specific sequence [Formula: see text] of a fragment. We propose, and confirm the numerical accuracy of, a simple factorization that separates the part of the apparent tangent-tangent correlation decay [Formula: see text] attributable to intrinsic shape, from a part [Formula: see text] attributable purely to stiffness, i.e., a sequence-dependent version of what has been called sequence-averaged dynamic persistence length l̅d (=58.8 nm within the cgDNA model). For ensembles of both random and λ-phage fragments, the apparent persistence length [Formula: see text] has a standard deviation of 4 nm over sequence, whereas our dynamic persistence length [Formula: see text] has a standard deviation of only 1 nm. However, there are notable dynamic persistence length outliers, including poly(A) (exceptionally straight and stiff), poly(TA) (tightly coiled and exceptionally soft), and phased A-tract sequence motifs (exceptionally bent and stiff). The results of our numerical simulations agree reasonably well with both molecular dynamics simulation and diverse experimental data including minicircle cyclization rates and stereo cryo-electron microscopy images.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa