Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(52): 33597-33607, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318207

RESUMO

Axon injury is a hallmark of many neurodegenerative diseases, often resulting in neuronal cell death and functional impairment. Dual leucine zipper kinase (DLK) has emerged as a key mediator of this process. However, while DLK inhibition is robustly protective in a wide range of neurodegenerative disease models, it also inhibits axonal regeneration. Indeed, there are no genetic perturbations that are known to both improve long-term survival and promote regeneration. To identify such a neuroprotective target, we conducted a set of complementary high-throughput screens using a protein kinase inhibitor library in human stem cell-derived retinal ganglion cells (hRGCs). Overlapping compounds that promoted both neuroprotection and neurite outgrowth were bioinformatically deconvoluted to identify specific kinases that regulated neuronal death and axon regeneration. This work identified the role of germinal cell kinase four (GCK-IV) kinases in cell death and additionally revealed their unexpected activity in suppressing axon regeneration. Using an adeno-associated virus (AAV) approach, coupled with genome editing, we validated that GCK-IV kinase knockout improves neuronal survival, comparable to that of DLK knockout, while simultaneously promoting axon regeneration. Finally, we also found that GCK-IV kinase inhibition also prevented the attrition of RGCs in developing retinal organoid cultures without compromising axon outgrowth, addressing a major issue in the field of stem cell-derived retinas. Together, these results demonstrate a role for the GCK-IV kinases in dissociating the cell death and axonal outgrowth in neurons and their druggability provides for therapeutic options for neurodegenerative diseases.


Assuntos
Axônios/enzimologia , Axônios/patologia , Sistema Nervoso Central/patologia , Quinases do Centro Germinativo/metabolismo , Regeneração Nervosa , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dependovirus/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Organoides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Exp Eye Res ; 171: 54-61, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29526794

RESUMO

Optic neuropathies such as glaucoma are characterized by the degeneration of retinal ganglion cells (RGCs) and the irreversible loss of vision. In these diseases, focal axon injury triggers a propagating axon degeneration and, eventually, cell death. Previous work by us and others identified dual leucine zipper kinase (DLK) and JUN N-terminal kinase (JNK) as key mediators of somal cell death signaling in RGCs following axonal injury. Moreover, others have shown that activation of the DLK/JNK pathway contributes to distal axonal degeneration in some neuronal subtypes and that this activation is dependent on the adaptor protein, sterile alpha and TIR motif containing 1 (SARM1). Given that SARM1 acts upstream of DLK/JNK signaling in axon degeneration, we tested whether SARM1 plays a similar role in RGC somal apoptosis in response to optic nerve injury. Using the mouse optic nerve crush (ONC) model, our results show that SARM1 is critical for RGC axonal degeneration and that axons rescued by SARM1 deficiency are electrophysiologically active. Genetic deletion of SARM1 did not, however, prevent DLK/JNK pathway activation in RGC somas nor did it prevent or delay RGC cell death. These results highlight the importance of SARM1 in RGC axon degeneration and suggest that somal activation of the DLK/JNK pathway is activated by an as-yet-unidentified SARM1-independent signal.


Assuntos
Proteínas do Domínio Armadillo/fisiologia , Axônios/metabolismo , Proteínas do Citoesqueleto/fisiologia , Modelos Animais de Doenças , Traumatismos do Nervo Óptico/metabolismo , Receptores do Fator de Necrose Tumoral/fisiologia , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Apoptose/fisiologia , Axônios/patologia , Contagem de Células , Sobrevivência Celular , Eletrofisiologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compressão Nervosa , Traumatismos do Nervo Óptico/patologia , Degeneração Retiniana/patologia , Células Ganglionares da Retina/patologia
3.
Proc Natl Acad Sci U S A ; 112(50): E6927-36, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621751

RESUMO

Delayed revascularization of ischemic neural tissue is a major impediment to preservation of function in central nervous system (CNS) diseases including stroke and ischemic retinopathies. Therapeutic strategies allowing rapid revascularization are greatly needed to reduce ischemia-induced cellular damage and suppress harmful pathologic neovascularization. However, key mechanisms governing vascular recovery in ischemic CNS, including regulatory molecules governing the transition from tissue injury to tissue repair, are largely unknown. NF-E2-related factor 2 (Nrf2) is a major stress-response transcription factor well known for its cell-intrinsic cytoprotective function. However, its role in cell-cell crosstalk is less appreciated. Here we report that Nrf2 is highly activated in ischemic retina and promotes revascularization by modulating neurons in their paracrine regulation of endothelial cells. Global Nrf2 deficiency strongly suppresses retinal revascularization and increases pathologic neovascularization in a mouse model of ischemic retinopathy. Conditional knockout studies demonstrate a major role for neuronal Nrf2 in vascular regrowth into avascular retina. Deletion of neuronal Nrf2 results in semaphorin 6A (Sema6A) induction in hypoxic/ischemic retinal ganglion cells in a hypoxia-inducible factor-1 alpha (HIF-1α)-dependent fashion. Sema6A expression increases in avascular inner retina and colocalizes with Nrf2 in human fetal eyes. Extracellular Sema6A leads to dose-dependent suppression of the migratory phenotype of endothelial cells through activation of Notch signaling. Lentiviral-mediated delivery of Sema6A small hairpin RNA (shRNA) abrogates the defective retinal revascularization in Nrf2-deficient mice. Importantly, pharmacologic Nrf2 activation promotes reparative angiogenesis and suppresses pathologic neovascularization. Our findings reveal a unique function of Nrf2 in reprogramming ischemic tissue toward neurovascular repair via Sema6A regulation, providing a potential therapeutic strategy for ischemic retinal and CNS diseases.


Assuntos
Isquemia/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Neurônios/metabolismo , Vasos Retinianos/crescimento & desenvolvimento , Semaforinas/metabolismo , Animais , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Isquemia/patologia , Camundongos , Neovascularização Patológica , Receptores Notch/metabolismo , Regeneração , Vasos Retinianos/patologia , Transdução de Sinais
4.
Development ; 141(15): 3033-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25053434

RESUMO

The origin of the turtle shell over 200 million years ago greatly modified the amniote body plan, and the morphological plasticity of the shell has promoted the adaptive radiation of turtles. The shell, comprising a dorsal carapace and a ventral plastron, is a layered structure formed by basal endochondral axial skeletal elements (ribs, vertebrae) and plates of bone, which are overlain by keratinous ectodermal scutes. Studies of turtle development have mostly focused on the bones of the shell; however, the genetic regulation of the epidermal scutes has not been investigated. Here, we show that scutes develop from an array of patterned placodes and that these placodes are absent from a soft-shelled turtle in which scutes were lost secondarily. Experimentally inhibiting Shh, Bmp or Fgf signaling results in the disruption of the placodal pattern. Finally, a computational model is used to show how two coupled reaction-diffusion systems reproduce both natural and abnormal variation in turtle scutes. Taken together, these placodal signaling centers are likely to represent developmental modules that are responsible for the evolution of scutes in turtles, and the regulation of these centers has allowed for the diversification of the turtle shell.


Assuntos
Exoesqueleto/embriologia , Padronização Corporal , Tartarugas/embriologia , Exoesqueleto/fisiologia , Animais , Evolução Biológica , Desenvolvimento Ósseo , Proteínas Morfogenéticas Ósseas/metabolismo , Simulação por Computador , Embrião não Mamífero/anatomia & histologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Imageamento Tridimensional , Hibridização In Situ , Transdução de Sinais , Tartarugas/fisiologia
5.
Proc Natl Acad Sci U S A ; 110(10): 4045-50, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431148

RESUMO

Glaucoma, a major cause of blindness worldwide, is a neurodegenerative optic neuropathy in which vision loss is caused by loss of retinal ganglion cells (RGCs). To better define the pathways mediating RGC death and identify targets for the development of neuroprotective drugs, we developed a high-throughput RNA interference screen with primary RGCs and used it to screen the full mouse kinome. The screen identified dual leucine zipper kinase (DLK) as a key neuroprotective target in RGCs. In cultured RGCs, DLK signaling is both necessary and sufficient for cell death. DLK undergoes robust posttranscriptional up-regulation in response to axonal injury in vitro and in vivo. Using a conditional knockout approach, we confirmed that DLK is required for RGC JNK activation and cell death in a rodent model of optic neuropathy. In addition, tozasertib, a small molecule protein kinase inhibitor with activity against DLK, protects RGCs from cell death in rodent glaucoma and traumatic optic neuropathy models. Together, our results establish a previously undescribed drug/drug target combination in glaucoma, identify an early marker of RGC injury, and provide a starting point for the development of more specific neuroprotective DLK inhibitors for the treatment of glaucoma, nonglaucomatous forms of optic neuropathy, and perhaps other CNS neurodegenerations.


Assuntos
MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/fisiologia , Células Ganglionares da Retina/enzimologia , Células Ganglionares da Retina/patologia , Animais , Morte Celular/genética , Morte Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Glaucoma/tratamento farmacológico , Glaucoma/etiologia , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Masculino , Camundongos , Doenças do Nervo Óptico/etiologia , Doenças do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/enzimologia , Traumatismos do Nervo Óptico/patologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Ratos , Ratos Wistar , Células Ganglionares da Retina/efeitos dos fármacos , Transdução de Sinais , Regulação para Cima
6.
J Neurochem ; 133(2): 233-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683606

RESUMO

Retinal ischemia plays a critical role in multiple vision-threatening diseases and leads to death of retinal neurons, particularly ganglion cells. Oxidative stress plays an important role in this ganglion cell loss. Nrf2 (NF-E2-related factor 2) is a major regulator of the antioxidant response, and its role in the retina is increasingly appreciated. We investigated the potential retinal neuroprotective function of Nrf2 after ischemia-reperfusion (I/R) injury. In an experimental model of retinal I/R, Nrf2 knockout mice exhibited much greater loss of neuronal cells in the ganglion cell layer than wild-type mice. Primary retinal ganglion cells isolated from Nrf2 knockout mice exhibited decreased cell viability compared to wild-type retinal ganglion cells, demonstrating the cell-intrinsic protective role of Nrf2. The retinal neuronal cell line 661W exhibited reduced cell viability following siRNA-mediated knockdown of Nrf2 under conditions of oxidative stress, and this was associated with exacerbation of increase in reactive oxygen species. The synthetic triterpenoid CDDO-Im (2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide), a potent Nrf2 activator, inhibited reactive oxygen species increase in cultured 661W under oxidative stress conditions and increased neuronal cell survival after I/R injury in wild-type, but not Nrf2 knockout mice. Our findings indicate that Nrf2 exhibits a retinal neuroprotective function in I/R and suggest that pharmacologic activation of Nrf2 could be a therapeutic strategy. Oxidative stress is thought to be an important mediator of retinal ganglion cell death in ischemia-reperfusion injury. We found that the transcription factor NF-E2-related factor 2 (Nrf2), a major regulator of oxidative stress, is an important endogenous neuroprotective molecule in retinal ganglion cells in ischemia-reperfusion, exerting a cell-autonomous protective effect.  The triterpenoid 2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) reduces neurodegeneration following ischemia-reperfusion in an Nrf2-dependent fashion. This suggests that Nrf2-activating drugs including triterpenoids could be a therapeutic strategy for retinal neuroprotection.


Assuntos
Isquemia/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Sobrevivência Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Imidazóis/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , RNA Interferente Pequeno/farmacologia , Retina/citologia , Células Ganglionares da Retina/metabolismo , terc-Butil Hidroperóxido/farmacologia
7.
Fed Pract ; 34(7): 16-22, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30766286

RESUMO

Health care providers are in the unique position to promote a healthy postdeployment transition by assisting veterans to recognize nonpathologic transition symptoms, select appropriate coping strategies, and seek further assistance for more complex problems.

8.
Stem Cells Transl Med ; 6(11): 1972-1986, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29024560

RESUMO

Human pluripotent stem cells have the potential to promote biological studies and accelerate drug discovery efforts by making possible direct experimentation on a variety of human cell types of interest. However, stem cell cultures are generally heterogeneous and efficient differentiation and purification protocols are often lacking. Here, we describe the generation of clustered regularly-interspaced short palindromic repeats(CRISPR)-Cas9 engineered reporter knock-in embryonic stem cell lines in which tdTomato and a unique cell-surface protein, THY1.2, are expressed under the control of the retinal ganglion cell (RGC)-enriched gene BRN3B. Using these reporter cell lines, we greatly improved adherent stem cell differentiation to the RGC lineage by optimizing a novel combination of small molecules and established an anti-THY1.2-based protocol that allows for large-scale RGC immunopurification. RNA-sequencing confirmed the similarity of the stem cell-derived RGCs to their endogenous human counterparts. Additionally, we developed an in vitro axonal injury model suitable for studying signaling pathways and mechanisms of human RGC cell death and for high-throughput screening for neuroprotective compounds. Using this system in combination with RNAi-based knockdown, we show that knockdown of dual leucine kinase (DLK) promotes survival of human RGCs, expanding to the human system prior reports that DLK inhibition is neuroprotective for murine RGCs. These improvements will facilitate the development and use of large-scale experimental paradigms that require numbers of pure RGCs that were not previously obtainable. Stem Cells Translational Medicine 2017;6:1972-1986.


Assuntos
Diferenciação Celular , Técnicas de Reprogramação Celular/métodos , Edição de Genes/métodos , Células-Tronco Embrionárias Humanas/citologia , Células Ganglionares da Retina/citologia , Sistemas CRISPR-Cas , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Células Ganglionares da Retina/metabolismo , Fator de Transcrição Brn-3B/genética , Fator de Transcrição Brn-3B/metabolismo
9.
Neuron ; 94(6): 1142-1154.e6, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28641113

RESUMO

Dual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs. Moreover, we identify four transcription factors, JUN, activating transcription factor 2 (ATF2), myocyte-specific enhancer factor 2A (MEF2A), and SRY-Box 11 (SOX11), as being the major downstream mediators through which DLK/LZK activation leads to RGC cell death. Increased understanding of the DLK pathway has implications for understanding and treating neurodegenerative diseases.


Assuntos
Sobrevivência Celular/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Traumatismos do Nervo Óptico/genética , Células Ganglionares da Retina/metabolismo , Animais , Morte Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Citometria de Fluxo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Neuritos , Neurônios , Traumatismos do Nervo Óptico/patologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia
10.
PLoS One ; 10(10): e0141137, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26505191

RESUMO

PURPOSE: To determine if oral losartan treatment decreases the retinal ganglion cell (RGC) death caused by experimental intraocular pressure (IOP) elevation in mice. METHODS: We produced IOP increase in CD1 mice and performed unilateral optic nerve crush. Mice received oral losartan, spironolactone, enalapril, or no drug to test effects of inhibiting angiotensin receptors. IOP was monitored by Tonolab, and blood pressure was monitored by tail cuff device. RGC loss was measured in masked axon counts and RGC bodies by ß-tubulin labeling. Scleral changes that could modulate RGC injury were measured including axial length, scleral thickness, and retinal layer thicknesses, pressure-strain behavior in inflation testing, and study of angiotensin receptors and pathways by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry. RESULTS: Losartan treatment prevented significant RGC loss (median loss = 2.5%, p = 0.13), while median loss with water, spironolactone, and enalapril treatments were 26%, 28% and 43%; p < 0.0001). The lower RGC loss with losartan was significantly less than the loss with spironolactone or enalapril (regression model p = 0.001; drug treatment group term p = 0.01). Both losartan and enalapril significantly lowered blood pressure (p< 0.001), but losartan was protective, while enalapril led to worse than water-treated RGC loss. RGC loss after crush injury was unaffected by losartan treatment (difference from control p = 0.9). Survival of RGC in cell culture was not prolonged by sartan treatment. Axonal transport blockade after 3 day IOP elevations was less in losartan-treated than in control glaucoma eyes (p = 0.007). Losartan inhibited effects of glaucoma, including reduction in extracellular signal-related kinase activity and modification of glaucoma-related changes in scleral thickness and creep under controlled IOP. CONCLUSIONS: The neuroprotective effect of losartan in mouse glaucoma is associated with adaptive changes in the sclera expressed at the optic nerve head.


Assuntos
Glaucoma/tratamento farmacológico , Losartan/administração & dosagem , Células Ganglionares da Retina/efeitos dos fármacos , Esclera/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Glaucoma/patologia , Humanos , Pressão Intraocular/efeitos dos fármacos , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Disco Óptico/efeitos dos fármacos , Disco Óptico/patologia , Retina/efeitos dos fármacos , Retina/patologia , Células Ganglionares da Retina/patologia , Esclera/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa