Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Environ Sci Technol ; 53(7): 3620-3633, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30830765

RESUMO

Little is known about the regional extent and variability of nitrate from atmospheric deposition that is transported to streams without biological processing in forests. We measured water chemistry and isotopic tracers (δ18O and δ15N) of nitrate sources across the Northern Forest Region of the U.S. and Canada and reanalyzed data from other studies to determine when, where, and how unprocessed atmospheric nitrate was transported in catchments. These inputs were more widespread and numerous than commonly recognized, but with high spatial and temporal variability. Only 6 of 32 streams had high fractions (>20%) of unprocessed atmospheric nitrate during baseflow. Seventeen had high fractions during stormflow or snowmelt, which corresponded to large fractions in near-surface soil waters or groundwaters, but not deep groundwater. The remaining 10 streams occasionally had some (<20%) unprocessed atmospheric nitrate during stormflow or baseflow. Large, sporadic events may continue to be cryptic due to atmospheric deposition variation among storms and a near complete lack of monitoring for these events. A general lack of observance may bias perceptions of occurrence; sustained monitoring of chronic nitrogen pollution effects on forests with nitrate source apportionments may offer insights needed to advance the science as well as assess regulatory and management schemes.


Assuntos
Florestas , Nitratos , Canadá , Monitoramento Ambiental , Nitrogênio , Rios
2.
Glob Chang Biol ; 23(2): 840-856, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27472269

RESUMO

A cross-site analysis was conducted on seven diverse, forested watersheds in the northeastern United States to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four atmosphere-ocean general circulation models (AOGCMs; CCSM4, HadGEM2-CC, MIROC5, and MRI-CGCM3) included in Phase 5 of the Coupled Model Intercomparison Project, coupled with two Representative Concentration Pathways (RCP 8.5 and 4.5). The coarse resolution AOGCMs outputs were statistically downscaled using an asynchronous regional regression model to provide finer resolution future climate projections as inputs to the deterministic dynamic ecosystem model PnET-BGC. Simulation results indicated that projected warmer temperatures and longer growing seasons in the northeastern United States are anticipated to increase evapotranspiration across all sites, although invoking CO2 effects on vegetation (growth enhancement and increases in water use efficiency (WUE)) diminish this response. The model showed enhanced evapotranspiration resulted in drier growing season conditions across all sites and all scenarios in the future. Spruce-fir conifer forests have a lower optimum temperature for photosynthesis, making them more susceptible to temperature stress than more tolerant hardwood species, potentially giving hardwoods a competitive advantage in the future. However, some hardwood forests are projected to experience seasonal water stress, despite anticipated increases in precipitation, due to the higher temperatures, earlier loss of snow packs, longer growing seasons, and associated water deficits. Considering future CO2 effects on WUE in the model alleviated water stress across all sites. Modeled streamflow responses were highly variable, with some sites showing significant increases in annual water yield, while others showed decreases. This variability in streamflow responses poses a challenge to water resource management in the northeastern United States. Our analyses suggest that dominant vegetation type and soil type are important attributes in determining future hydrological responses to climate change.


Assuntos
Mudança Climática , Rios , Solo , Clima , Ecossistema , Florestas , New England , Plantas
3.
Ambio ; 44(3): 178-93, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25037589

RESUMO

Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human-ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.


Assuntos
Biodiversidade , Ecossistema , Ciclo do Nitrogênio , Mudança Climática
4.
Environ Monit Assess ; 187(7): 458, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26100445

RESUMO

Ca/Al molar ratios are commonly used to assess the extent of aluminum stress in forests. This is among the first studies to quantify Ca/Al molar ratios for stemflow. Ca/Al molar ratios in bulk precipitation, throughfall, stemflow, litter leachate, near-trunk soil solution, and soil water were quantified for a deciduous forest in northeastern MD, USA. Data were collected over a 3-year period. The Ca/Al molar ratios in this study were above the threshold for aluminum stress (<1). Fagus grandifolia Ehrh. (American beech) had a median annual stemflow Ca/Al molar ratio of 15.7, with the leafed and leafless values of 12.4 and 19.2, respectively. The corresponding Ca/Al molar ratios for Liriodendron tulipifera L. (yellow poplar) were 11.9 at the annual time scale and 11.9 and 13.6 for leafed and leafless periods, respectively. Bayesian statistical analysis showed no significant effect of canopy state (leafed, leafless) on Ca/Al molar ratios. DOC was consistently an important predictor of calcium, aluminum, and Ca/Al ratios. pH was occasionally an important predictor of calcium and aluminum concentrations, but was not a good predictor of Ca/Al ratio in any of the best-fit models (of >500 examined). This study supplies new data on Ca/Al molar ratios for stemflow from two common deciduous tree species. Future work should examine Ca/Al molar ratios in stemflow of other species and examine both inorganic and organic aluminum species to better gauge the potential for, and understand the dynamics of, aluminum toxicity in the proximal area around tree boles.


Assuntos
Alumínio/análise , Cálcio/análise , Monitoramento Ambiental/métodos , Fagus/fisiologia , Florestas , Liriodendron/fisiologia , Teorema de Bayes , Concentração de Íons de Hidrogênio , Modelos Lineares , Folhas de Planta/química , Chuva , Solo , Especificidade da Espécie , Árvores , Estados Unidos , Água/análise
5.
Glob Chang Biol ; 20(11): 3568-77, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24796872

RESUMO

Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes.


Assuntos
Biomassa , Mudança Climática , Florestas , Microbiologia do Solo , Clima , New Hampshire , Nitrogênio/metabolismo , Estações do Ano , Neve , Solo/química
6.
Environ Sci Technol ; 48(19): 11259-67, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25209676

RESUMO

Understanding sulfur (S) biogeochemistry, especially in those watersheds subject to elevated levels of atmospheric S inputs, is needed for determining the factors that contribute to acidification, nutrient losses and the mobilization of toxic solutes (e.g., monomeric aluminum and methylmercury). S is found in a variety of both organic and inorganic forms undergoing a range of biotic and abiotic transformations. In watersheds with decreasing atmospheric S inputs, internal cycling is becoming dominant in affecting whether there is net loss or retention of S. Little attention has been given to the role of dissolved organic S (DOS) in affecting S biogeochemistry. DOS originates from assimilatory and bacterial dissimilatory S reduction (BDSR), the latter of which produces (34)S-depleted S. Within groundwater of the Archer Creek Catchment in the Adirondack Mountains (New York) there was reoxidation of reduced S, which was an important source of SO4(2-). DOS in surface waters had a higher variation of δ(34)S-DOS values (-6.0 to +8.4‰) than inorganic S with δ(34)S-SO4(2-) values ranging from +1.0 to +5.8‰. Inverse correlations between δ(34)S values of SO4(2-) and DOS suggested that BDSR played an important role in producing DOS.


Assuntos
Enxofre/análise , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Água Subterrânea/química , New York , Sulfatos/análise
7.
Environ Sci Technol ; 45(12): 5267-71, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21595471

RESUMO

North American atmospheric S emissions peaked in the early 1970s followed by a dramatic decrease that resulted in marked declines in sulfate (SO4²â»)) concentrations in precipitation and many surface waters. These changes in S biogeochemistry have important implications with respect to the mobilization of toxic (Al(n⁺), H⁺) and nutrient (Ca²âº, Mg²âº, K⁺) cations and the acidification of watersheds. We used the continuous long-term record for watersheds 1, 3, 5, and 6 (37-44 years from 1965 through 2008) of SO4²â» concentrations and fluxes at Hubbard Brook Experimental Forest in New Hampshire (U.S.) for evaluating S budgets. Analysis revealed that the annual discrepancies in the watershed S budgets (SO4²â» flux in drainage waters minus total atmospheric S deposition) have become significantly (p < 0.001) more negative, indicating the increasing importance of the release of S from internal sources with time. Watershed wetness, as a function of log10 annual water flux, was highly significant (p < 0.001) and explained 57% (n = 157) of the annual variation for the combined results from watersheds 1, 3, 5, and 6. The biogeochemical control of annual SO4²â» export in streamwater of forested watersheds has shifted from atmospheric S deposition to climatic factors by affecting soil moisture.


Assuntos
Fenômenos Químicos , Clima , Enxofre/análise , Água/química , Dióxido de Enxofre/análise , Estados Unidos
8.
J Environ Manage ; 92(10): 2628-33, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21723661

RESUMO

Supplying freshwater is one of the important methods to help restore degraded wetlands. Changes in soil properties and plant community biomass were evaluated by comparing sites with freshwater treatment versus reference sites following freshwater addition to wetlands of the Yellow River Delta for 7 years. The results indicated that soil organic carbon (SOC) was significantly increased in all wetland sites that were treated with freshwater compared to the reference sites. The treatment wetlands had greater total nitrogen (TN), lower pH and electrical conductivity and higher water content in the soil compared to the reference wetlands. In general, the upper soil layer (0-20 cm) had greater SOC than the lower soil layer (20-40 cm). The increase of SOC in the freshwater reintroduction wetlands was higher in the Suaeda salsa plant community (mean ± standard error) (6.89 ± 0.63 g/kg) and Phragmites communis plant community (4.11 ± 0.12 g/kg) than in the Tamarix chinensis plant community (1.40 ± 0.31 g/kg) in the upper soil layer. The differences were especially marked between the treated and reference wetlands for SOC and TN in the P. communis plant communities. The C:N ratio of the soil was significantly greater in the treated compared to the reference wetlands for the S. salsa plant community. Although the C: N ratios increased after treatment, they were all <25 suggesting that N availability was not limiting soil organic matter decomposition. Our results indicate that freshwater addition and the concomitant increase in soil moisture content enhances the accumulation of SOC in the Yellow River Delta.


Assuntos
Carbono/análise , Conservação dos Recursos Naturais/métodos , Água Doce , Magnoliopsida/crescimento & desenvolvimento , Nitrogênio/análise , Solo/análise , Áreas Alagadas , Biomassa , Chenopodiaceae , China , Eletricidade , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental/métodos , Concentração de Íons de Hidrogênio , Poaceae , Valores de Referência , Rios , Tamaricaceae
9.
Ecol Appl ; 18(7): 1604-14, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18839757

RESUMO

Studies of the long-term impacts of acidic deposition in Europe and North America have prompted growing interest in understanding the dynamics linking the nitrogen (N) and calcium (Ca) cycles in forested watersheds. While it has been shown that increasing concentrations of nitrate (NO3-) through atmospheric deposition or through nitrification can increase Ca loss, the reciprocal effects of Ca on N transformation processes have received less attention. We studied the influence of soil Ca availability on extractable inorganic N (NO3- + NH4+) across a Ca gradient in the Adirondack Mountains, New York, USA. Our results did not show the direct Ca-N interaction that we had expected, but instead showed that exchangeable Ca coupled with soil moisture, soil organic matter, and ambient temperature accounted for 61% of the variability in extractable inorganic N across 11 sites over two growing seasons. Soil Ca concentrations were, however, positively related to sugar maple (Acer saccharum) and American basswood (Tilia americana) basal areas and negatively related to American beech (Fagus grandifolia) basal area. Based on litter chemistry differences among these tree species and reported potential N mineralization values, we suggest that the influence of Ca on soil inorganic N is through a multistep pathway: reciprocal interactions between soil Ca concentrations and species composition, which in turn affect the quality of litter available for N mineralization. If chronic soil Ca depletion continues, as reported in some forested ecosystems, potential shifts in biotic communities could result in considerable alterations of N cycling processes.


Assuntos
Cálcio/química , Ecossistema , Nitrogênio/química , Solo/análise , New York
10.
Sci Total Environ ; 404(2-3): 262-8, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18456308

RESUMO

Stable sulfur (S) isotope ratios can be used to identify the sources of sulfate contributing to streamwater. We collected weekly and high-flow stream samples for S isotopic analysis of sulfate through the entire water year 2003 plus the snowmelt period of 2004. The study area was the 41-ha forested W-9 catchment at Sleepers River Research Watershed, Vermont, a site known to produce sulfate from weathering of sulfide minerals in the bedrock. The delta(34)S values of streamwater sulfate followed an annual sinusoidal pattern ranging from about 6.5 per thousand in early spring to about 10 per thousand in early fall. During high-flow events, delta(34)S values typically decreased by 1 to 3 per thousand from the prevailing seasonal value. The isotopic evidence suggests that stream sulfate concentrations are controlled by: (1) an overall dominance of bedrock-derived sulfate (delta(34)S approximately 6-14 per thousand); (2) contributions of pedogenic sulfate (delta(34)S approximately 5-6 per thousand) during snowmelt and storms with progressively diminishing contributions during base flow recession; and (3) minor effects of dissimilatory bacterial sulfate reduction and subsequent reoxidation of sulfides. Bedrock should not be overlooked as a source of S in catchment sulfate budgets.


Assuntos
Monitoramento Ambiental , Sulfatos/análise , Isótopos de Enxofre/análise , Árvores , Poluentes Químicos da Água/análise , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Oxirredução , Estações do Ano , Sulfetos/análise , Vermont , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa