Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(39): E8254-E8263, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28894005

RESUMO

The transmembrane semaphorin Sema-1a acts as both a ligand and a receptor to regulate axon-axon repulsion during neural development. Pebble (Pbl), a Rho guanine nucleotide exchange factor, mediates Sema-1a reverse signaling through association with the N-terminal region of the Sema-1a intracellular domain (ICD), resulting in cytoskeletal reorganization. Here, we uncover two additional Sema-1a interacting proteins, varicose (Vari) and cheerio (Cher), each with neuronal functions required for motor axon pathfinding. Vari is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins, members of which can serve as scaffolds to organize signaling complexes. Cher is related to actin filament cross-linking proteins that regulate actin cytoskeleton dynamics. The PDZ domain binding motif found in the most C-terminal region of the Sema-1a ICD is necessary for interaction with Vari, but not Cher, indicative of distinct binding modalities. Pbl/Sema-1a-mediated repulsive guidance is potentiated by both vari and cher Genetic analyses further suggest that scaffolding functions of Vari and Cher play an important role in Pbl-mediated Sema-1a reverse signaling. These results define intracellular components critical for signal transduction from the Sema-1a receptor to the cytoskeleton and provide insight into mechanisms underlying semaphorin-induced localized changes in cytoskeletal organization.


Assuntos
Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Filaminas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanilato Ciclase/metabolismo , Proteínas de Membrana/metabolismo , Semaforinas/metabolismo , Transdução de Sinais/fisiologia , Motivos de Aminoácidos , Animais , Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Filaminas/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Guanilato Ciclase/genética , Proteínas de Membrana/genética , Domínios Proteicos , Semaforinas/genética
2.
J Neurosci ; 34(38): 12745-61, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232112

RESUMO

Most excitatory synapses in the mammalian brain are formed on dendritic spines, and spine density has a profound impact on synaptic transmission, integration, and plasticity. Membrane-associated guanylate kinase (MAGUK) proteins are intracellular scaffolding proteins with well established roles in synapse function. However, whether MAGUK proteins are required for the formation of dendritic spines in vivo is unclear. We isolated a novel disc large-5 (Dlg5) allele in mice, Dlg5(LP), which harbors a missense mutation in the DLG5 SH3 domain, greatly attenuating its ability to interact with the DLG5 GUK domain. We show here that DLG5 is a MAGUK protein that regulates spine formation, synaptogenesis, and synaptic transmission in cortical neurons. DLG5 regulates synaptogenesis by enhancing the cell surface localization of N-cadherin, revealing a key molecular mechanism for regulating the subcellular localization of this cell adhesion molecule during synaptogenesis.


Assuntos
Caderinas/metabolismo , Espinhas Dendríticas/fisiologia , Guanilato Quinases/fisiologia , Proteínas de Membrana/fisiologia , Neurogênese/fisiologia , Sinapses/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/fisiologia , Córtex Cerebral/ultraestrutura , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Guanilato Quinases/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Mutação de Sentido Incorreto , Cultura Primária de Células , Sinapses/ultraestrutura , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , beta Catenina/metabolismo
3.
Elife ; 62017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632130

RESUMO

The ellipsoid body (EB) in the Drosophila brain is a central complex (CX) substructure that harbors circumferentially laminated ring (R) neuron axons and mediates multifaceted sensory integration and motor coordination functions. However, what regulates R axon lamination and how lamination affects R neuron function remain unknown. We show here that the EB is sequentially innervated by small-field and large-field neurons and that early developing EB neurons play an important regulatory role in EB laminae formation. The transmembrane proteins semaphorin-1a (Sema-1a) and plexin A function together to regulate R axon lamination. R neurons recruit both GABA and GABA-A receptors to their axon terminals in the EB, and optogenetic stimulation coupled with electrophysiological recordings show that Sema-1a-dependent R axon lamination is required for preventing the spread of synaptic inhibition between adjacent EB lamina. These results provide direct evidence that EB lamination is critical for local pre-synaptic inhibitory circuit organization.


Assuntos
Drosophila/embriologia , Vias Neurais/embriologia , Semaforinas/metabolismo , Animais , Encéfalo/embriologia , Proteínas de Drosophila/metabolismo , Fenômenos Eletrofisiológicos , Proteínas do Tecido Nervoso/metabolismo , Optogenética , Organogênese , Terminações Pré-Sinápticas/fisiologia , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa