Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998006

RESUMO

Preserving local autochthonous domestic animal populations and the products derived from them is a crucial aspect of managing human utilization of the biosphere. This management approach aims to ensure sustainable benefits for both present and future generations. The diversity of autochthonous domestic animal populations plays a vital role in the functionality and sustainability of the food production system. It encompasses both productive and non-productive aspects, contributing significantly to the overall health, nutrition, and food security of the landscape by providing a wide range of animal-derived food resources. Based on the data contained in the Draft Program of Rural Development, a significant presence of more than 44 autochthonous and local breeds of domestic animals has been noted in Serbia. In order to enable the sustainable preservation of local domestic animals, the competent Ministry of Agriculture of the Republic of Serbia has, through a number of projects, implemented models for the preservation of local breeds on farms (in situ), as well as provided technical assistance to small farms that keep animal collections. It also helps the local population to procure animals, conducts product quality research, and provides opportunities to integrate conservation programs through tourism. Given that molecular characterization is a key factor for the preservation of autochthonous breeds, in the Republic of Serbia, DNA markers are used for identification and to investigate the belonging to a specific breeds or strain. All the mentioned activities led to an immediate increase in the number of animals, which is especially true for the autochthonous breeds of cattle (Busha), sheep (Sjenicka, Svrljiska, and Vlach-vitohorn) and pigs (Mangalitsa, Moravka, and Resavka) that are discussed in this paper. In addition to the significant measures undertaken to preserve animal genetic resources (AnGR), it is necessary to continue to work primarily on ex situ conservation in order to prevent the loss of their gene pools. However, regardless of the evident effort that has been made to preserve autochthonous genetic resources in Serbia, we believe that there is still a lot of room for further improvement. This primarily refers to advanced technologies that have not been applied so far, mostly related to the identification of genomic regions associated with economic traits, resistance to diseases, and adaptability to emerging climate changes. In this way, the production capacity and functional characteristics of autochthonous species and breeds of domestic animals in Serbia will be improved.

2.
Water Res X ; 15: 100130, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287381

RESUMO

Nitrous oxide (N2O) dominates greenhouse gas emissions in wastewater treatment plants (WWTPs). Formation of N2O occurs during biological nitrogen removal, involves multiple microbial pathways, and is typically very dynamic. Consequently, N2O mitigation strategies require an improved understanding of nitrogen transformation pathways and their modulating controls. Analyses of the nitrogen (N) and oxygen (O) isotopic composition of N2O and its substrates at natural abundance have been shown to provide valuable information on formation and reduction pathways in laboratory settings, but have rarely been applied to full-scale WWTPs. Here we show that N-species isotope ratio measurements at natural abundance level, combined with long-term N2O monitoring, allow identification of the N2O production pathways in a full-scale plug-flow WWTP (Hofen, Switzerland). Heterotrophic denitrification appears as the main N2O production pathway under all tested process conditions (0-2 mgO2/l, high and low loading conditions), while nitrifier denitrification was less important, and more variable. N2O production by hydroxylamine oxidation was not observed. Fractional N2O elimination by reduction to dinitrogen (N2) during anoxic conditions was clearly indicated by a concomitant increase in site preference, δ18O(N2O) and δ15N(N2O). N2O reduction increased with decreasing availability of dissolved inorganic N and organic substrates, which represents the link between diurnal N2O emission dynamics and organic substrate fluctuations. Consequently, dosing ammonium-rich reject water under low-organic-substrate conditions is unfavorable, as it is very likely to cause high net N2O emissions. Our results demonstrate that monitoring of the N2O isotopic composition holds a high potential to disentangle N2O formation mechanisms in engineered systems, such as full-scale WWTP. Our study serves as a starting point for advanced campaigns in the future combining isotopic technologies in WWTP with complementary approaches, such as mathematical modeling of N2O formation or microbial assays to develop efficient N2O mitigation strategies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa