Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 28(5): 1276-1286, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32220305

RESUMO

Malignant brain tumors are among the most aggressive cancers with poor prognosis and no effective treatment. Recently, we reported the oncolytic potential of Zika virus infecting and destroying the human central nervous system (CNS) tumors in vitro and in immunodeficient mice model. However, translating this approach to humans requires pre-clinical trials in another immunocompetent animal model. Here, we analyzed the safety of Brazilian Zika virus (ZIKVBR) intrathecal injections in three dogs bearing spontaneous CNS tumors aiming an anti-tumoral therapy. We further assessed some aspects of the innate immune and inflammatory response that triggers the anti-tumoral response observed during the ZIKVBR administration in vivo and in vitro. For the first time, we showed that there were no negative clinical side effects following ZIKVBR CNS injections in dogs, confirming the safety of the procedure. Furthermore, the intrathecal ZIKVBR injections reduced tumor size in immunocompetent dogs bearing spontaneous intracranial tumors, improved their neurological clinical symptoms significantly, and extended their survival by inducing the destruction specifically of tumor cells, sparing normal neurons, and activating an immune response. These results open new perspectives for upcoming virotherapy using ZIKV to destroy and induce an anti-tumoral immune response in CNS tumors for which there are currently no effective treatments.


Assuntos
Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/terapia , Terapia Viral Oncolítica/métodos , Segurança do Paciente , Carga Tumoral , Infecção por Zika virus/complicações , Zika virus/imunologia , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Citocinas/metabolismo , Modelos Animais de Doenças , Cães , Imunidade , Injeções Espinhais , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/virologia , Monócitos/imunologia , Monócitos/virologia , Neurônios/metabolismo , Neurônios/virologia , Resultado do Tratamento
2.
Stem Cells Int ; 2022: 1613636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035513

RESUMO

Cytogenetic aberrations may emerge in human mesenchymal stromal cells (MSC) during ex vivo expansion for cell therapy. We have detected clonal trisomy 5 in two distinct autologous MSC products expanded from bone marrow which, based on the current quality control criteria, could not be released for clinical use. Although a safety concern, it is still unclear to what extent recurrent aneuploidies detected in MSC products may affect the threshold for neoplastic transformation or the medicinal properties of these cells. We have carried out an exploratory preclinical study to evaluate these MSC products with clonal trisomy 5, regarding their oncogenic and immunomodulatory potential. Cell population growth in vitro was reduced in MSC cultures with clonal trisomy 5 compared with the population growth of their euploid MSC counterparts, based on a lower cumulative population doubling level, reduced cell proliferation index, and increased senescence-associated beta-galactosidase activity. Subcutaneous injection of clinically relevant amount of MSC population, either with or without clonal trisomy 5, did not generate tumors in immunodeficient mice within a follow-up period of six months. Most importantly, MSC population with clonal trisomy 5 kept immunomodulatory properties upon interferon gamma (IFNγ) licensing, displaying overexpression of IDO, CXCL9, CXCL10, and CXCL11, in a similar fashion than that of IFNγ-licensed euploid MSC. Our findings suggest that bone marrow MSC products with clonal trisomy 5 may retain their therapeutic potential, based on poor tumor initiating capability and preserved immunomodulatory potency. This preclinical evidence may further support the definition of release criteria of autologous MSC products for cell therapy under critical clinical scenarios. This trial is registered with Clinical Study registration number: RBR-29x2pr.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa