Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Pharmacol Res ; 194: 106845, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437646

RESUMO

The promise of nicotinic receptors as a therapeutic target has yet to be fully realized, despite solid data supporting their involvement in neurological and neuropsychiatric diseases. The reasons for this are likely complex and manifold, having to do with the widespread action of the cholinergic system and the biophysical mechanism of action of nicotinic receptors leading to fast desensitization and down-regulation. Conventional drug development strategies tend to focus on receptor subtype-specific action of candidate therapeutics, although the broad agonist, nicotine, is being explored in the clinic. The potential negative effects of nicotine make the search for alternate strategies warranted. Prototoxins are a promising yet little-explored avenue of nicotinic receptor drug development. Nicotinic receptors in the brain belong to a complex of proteins, including those that bind to the extracellular face of the receptor, as well as chaperones that bind the intracellular domain, etc. Lynx prototoxins have allosteric modularity effects on receptor function and number and have been implicated in complex in vivo processes such as neuroplasticity, learning, and memory. Their mechanism of action and binding specificity on sets of nAChR subtypes present intriguing possibilities for more efficacious and nuanced therapeutic targeting than nicotinic receptor subtypes alone. An allosteric drug may restrict its actions to physiologically relevant time points, which tend to be correlated with salient events which would be encoded into long-term memory storage. Rather than blanketing the brain with a steady and prolonged elevation of agonist, an allosteric nAChR compound could avoid side effects and loss of efficacy over time. This review details the potential strengths and challenges of prototoxin proteins as therapeutic targets, and some of the utility of such therapeutics based on the emerging understanding of cholinergic signaling in a growing number of complex neural processes.


Assuntos
Nicotina , Receptores Nicotínicos , Animais , Colinérgicos , Proteínas Ligadas por GPI , Mamíferos/metabolismo , Neurotoxinas , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Humanos
2.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234723

RESUMO

Protein-protein interactions often involve a complex system of intermolecular interactions between residues and atoms at the binding site. A comprehensive exploration of these interactions can help reveal key residues involved in protein-protein recognition that are not obvious using other protein analysis techniques. This paper presents and extends DiffBond, a novel method for identifying and classifying intermolecular bonds while applying standard definitions of bonds in chemical literature to explain protein interactions. DiffBond predicted intermolecular bonds from four protein complexes: Barnase-Barstar, Rap1a-raf, SMAD2-SMAD4, and a subset of complexes formed from three-finger toxins and nAChRs. Based on validation through manual literature search and through comparison of two protein complexes from the SKEMPI dataset, DiffBond was able to identify intermolecular ionic bonds and hydrogen bonds with high precision and recall, and identify salt bridges with high precision. DiffBond predictions on bond existence were also strongly correlated with observations of Gibbs free energy change and electrostatic complementarity in mutational experiments. DiffBond can be a powerful tool for predicting and characterizing influential residues in protein-protein interactions, and its predictions can support research in mutational experiments and drug design.


Assuntos
Ligação de Hidrogênio , Sítios de Ligação , Fenômenos Biofísicos , Eletricidade Estática
3.
FASEB J ; 31(4): 1398-1420, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28100642

RESUMO

This study investigates-for the first time to our knowledge-the existence and mechanisms of functional interactions between the endogenous mammalian prototoxin, lynx1, and α3- and ß4-subunit-containing human nicotinic acetylcholine receptors (α3ß4*-nAChRs). Concatenated gene constructs were used to express precisely defined α3ß4*-nAChR isoforms (α3ß4)2ß4-, (α3ß4)2α3-, (α3ß4)2α5(398D)-, and (α3ß4)2α5(398N)-nAChR in Xenopus oocytes. In the presence or absence of lynx1, α3ß4*-nAChR agonist responses were recorded by using 2-electrode voltage clamp and single-channel electrophysiology, whereas radioimmunolabeling measured cell-surface expression. Lynx1 reduced (α3ß4)2ß4-nAChR function principally by lowering cell-surface expression, whereas single-channel effects were primarily responsible for reducing (α3ß4)2α3-nAChR function [decreased unitary conductance (≥50%), altered burst proportions (3-fold reduction in the proportion of long bursts), and enhanced closed dwell times (3- to 6-fold increase)]. Alterations in both cell-surface expression and single-channel properties accounted for the reduction in (α3ß4)2α5-nAChR function that was mediated by lynx1. No effects were observed when α3ß4*-nAChRs were coexpressed with mutated lynx1 (control). Lynx1 is expressed in the habenulopeduncular tract, where α3ß4*-α5*-nAChR subtypes are critical contributors to the balance between nicotine aversion and reward. This gives our findings a high likelihood of physiologic significance. The exquisite isoform selectivity of lynx1 interactions provides new insights into the mechanisms and allosteric sites [α(-)-interface containing] by which prototoxins can modulate nAChR function.-George, A. A., Bloy, A., Miwa, J. M., Lindstrom, J. M., Lukas, R. J., Whiteaker, P. Isoform-specific mechanisms of α3ß4*-nicotinic acetylcholine receptor modulation by the prototoxin lynx1.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Receptores Nicotínicos/metabolismo , Potenciais de Ação , Proteínas Adaptadoras de Transdução de Sinal , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Proteínas Ligadas por GPI/genética , Humanos , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Xenopus
4.
J Neurosci ; 35(9): 3734-46, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25740504

RESUMO

The glutamatergic subthalamic nucleus (STN) exerts control over motor output through nuclei of the basal ganglia. High-frequency electrical stimuli in the STN effectively alleviate motor symptoms in movement disorders, and cholinergic stimulation boosts this effect. To gain knowledge about the mechanisms of cholinergic modulation in the STN, we studied cellular and circuit aspects of nicotinic acetylcholine receptors (nAChRs) in mouse STN. We discovered two largely divergent microcircuits in the STN; these are regulated in part by either α4ß2 or α7 nAChRs. STN neurons containing α4ß2 nAChRs (α4ß2 neurons) received more glutamatergic inputs, and preferentially innervated GABAergic neurons in the substantia nigra pars reticulata. In contrast, STN neurons containing α7 nAChRs (α7 neurons) received more GABAergic inputs, and preferentially innervated dopaminergic neurons in the substantia nigra pars compacta. Interestingly, local electrical stimuli excited a majority (79%) of α4ß2 neurons but exerted strong inhibition in 58% of α7 neurons, indicating an additional diversity of STN neurons: responses to electrical stimulation. Chronic exposure to nicotine selectively affects α4ß2 nAChRs in STN: this treatment increased the number of α4ß2 neurons, upregulated α4-containing nAChR number and sensitivity, and enhanced the basal firing rate of α4ß2 neurons both ex vivo and in vivo. Thus, chronic nicotine enhances the function of the microcircuit involving α4ß2 nAChRs. This indicates chronic exposure to nicotinic agonist as a potential pharmacological intervention to alter selectively the balance between these two microcircuits, and may provide a means to inhibit substantia nigra dopaminergic neurons.


Assuntos
Rede Nervosa/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Núcleo Subtalâmico/efeitos dos fármacos , Animais , Colinérgicos/farmacologia , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/farmacologia , Sinapses/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/efeitos dos fármacos
5.
J Biol Chem ; 289(45): 31423-32, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25193667

RESUMO

Glycosylphosphatidylinositol-anchored neurotoxin-like receptor binding proteins, such as lynx modulators, are topologically positioned to exert pharmacological effects by binding to the extracellular portion of nAChRs. These actions are generally thought to proceed when both lynx and the nAChRs are on the plasma membrane. Here, we demonstrate that lynx1 also exerts effects on α4ß2 nAChRs within the endoplasmic reticulum. Lynx1 affects assembly of nascent α4 and ß2 subunits and alters the stoichiometry of the receptor population that reaches the plasma membrane. Additionally, these data suggest that lynx1 shifts nAChR stoichiometry to low sensitivity (α4)3(ß2)2 pentamers primarily through this interaction in the endoplasmic reticulum, rather than solely via direct modulation of activity on the plasma membrane. To our knowledge, these data represent the first test of the hypothesis that a lynx family member, or indeed any glycosylphosphatidylinositol-anchored protein, could act within the cell to alter assembly of a multisubunit protein.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/fisiologia , Neuropeptídeos/fisiologia , Receptores Nicotínicos/química , Acetilcolina/química , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cisteína/química , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Células HEK293 , Humanos , Camundongos , Microscopia Confocal , Plasmídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
6.
Physiology (Bethesda) ; 27(4): 187-99, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22875450

RESUMO

The cholinergic system underlies both adaptive (learning and memory) and nonadaptive (addiction and dependency) behavioral changes through its ability to shape and regulate plasticity. Protein modulators such as lynx family members can fine tune the activity of the cholinergic system and contribute to the graded response of the cholinergic system, stabilizing neural circuitry through direct interaction with nicotinic receptors. Release of this molecular brake can unmask cholinergic-dependent mechanisms in the brain. Lynx proteins have the potential to provide top-down control over plasticity mechanisms, including addictive propensity. If this is indeed the case, then, what regulates the regulator? Transcriptional changes of lynx genes in response to pharmacological, physiological, and pathological alterations are explored in this review.


Assuntos
Colinérgicos/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neuropeptídeos/metabolismo , Nicotina/efeitos adversos , Receptores Nicotínicos/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Comportamento Aditivo/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Plasticidade Neuronal/fisiologia , Transtornos Relacionados ao Uso de Substâncias/patologia
7.
Res Sq ; 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36778356

RESUMO

Cholinergic signaling is critical for an individual to react appropriately and adaptably to salient stimuli while navigating a complex environment. The cholinergic neurotransmitter system drives attention to salient stimuli, such as stressors, and aids in orchestrating the proper neural and behavioral response. Fine-tuned regulation of the cholinergic system has been linked to appropriate stress responses and subsequent mood regulation while dysregulation has been implicated in mood disorders. Among the multiple layers of regulation are cholinergic protein modulators. Here, we use validated models of experiential-based affective disorders to investigate differences in responses to stress in a genetic mouse model of cholinergic dysregulation based on the loss of protein modulator. The lynx2 nicotinic receptor modulatory protein provides negative cholinergic regulation within the amygdala, medial prefrontal cortex, and other brain regions. We discovered here that lynx2 knockout (KO) mice demonstrate an inability to update behavior with an inability to extinguish learned fear during a fear extinction test. We also observed, under an increased stress load following exposure to chronic social defeat stress (CSDS) paradigm, there was a unified resilience phenotype in lynx2KO mice, as opposed to the wild-type cohort which was split between resilience and susceptible phenotypes. Furthermore, we provide evidence for the functional role of α7 nicotinic receptor subtypes by phenotypic rescue with MLA or crossing with an α7 null mutant mouse (e.g. lynx2/α7 double KO mice). We demonstrate a direct physical interaction between lynx2 and α7 nAChR by co-immunoprecipitation of complexes from mouse BLA extracts. The genetic predisposition to heightened basal anxiety-like behavior and altered cholinergic signaling impairs individual behavior responses stressors. Together, these data indicate that the effects of social stress can be influenced by baseline genetic factors involved in anxiety regulation.

8.
Mol Pharmacol ; 81(6): 759-69, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22379121

RESUMO

We report the first observation that endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) can decrease when a central nervous system drug acts as an intracellular pharmacological chaperone for its classic receptor. Transient expression of α4ß2 nicotinic receptors (nAChRs) in Neuro-2a cells induced the nuclear translocation of activating transcription factor 6 (ATF6), which is part of the UPR. Cells were exposed for 48 h to the full agonist nicotine, the partial agonist cytisine, or the competitive antagonist dihydro-ß-erythroidine; we also tested mutant nAChRs that readily exit the ER. Each of these four manipulations increased Sec24D-enhanced green fluorescent protein fluorescence of condensed ER exit sites and attenuated translocation of ATF6-enhanced green fluorescent protein to the nucleus. However, we found no correlation among the manipulations regarding other tested parameters [i.e., changes in nAChR stoichiometry (α4(2)ß2(3) versus α4(3)ß2(2)), changes in ER and trans-Golgi structures, or the degree of nAChR up-regulation at the plasma membrane]. The four manipulations activated 0 to 0.4% of nAChRs, which shows that activation of the nAChR channel did not underlie the reduced ER stress. Nicotine also attenuated endogenously expressed ATF6 translocation and phosphorylation of eukaryotic initiation factor 2α in mouse cortical neurons transfected with α4ß2 nAChRs. We conclude that, when nicotine accelerates ER export of α4ß2 nAChRs, this suppresses ER stress and the UPR. Suppression of a sustained UPR may explain the apparent neuroprotective effect that causes the inverse correlation between a person's history of tobacco use and susceptibility to developing Parkinson's disease. This suggests a novel mechanism for neuroprotection by nicotine.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Chaperonas Moleculares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Fator 6 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Complexo de Golgi/metabolismo , Camundongos , Nicotina/farmacologia , Fosforilação , Transporte Proteico , Receptores Nicotínicos/metabolismo , Espectrometria de Fluorescência , Resposta a Proteínas não Dobradas
9.
J Biol Chem ; 286(36): 31241-9, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21768117

RESUMO

We employed a pH-sensitive GFP analog, superecliptic phluorin, to observe aspects of nicotinic acetylcholine receptor (nAChR) trafficking to the plasma membrane (PM) in cultured mouse cortical neurons. The experiments exploit differences in the pH among endoplasmic reticulum (ER), trafficking vesicles, and the extracellular solution. The data confirm that few α4ß4 nAChRs, but many α4ß2 nAChRs, remain in neutral intracellular compartments, mostly the ER. We observed fusion events between nAChR-containing vesicles and PM; these could be quantified in the dendritic processes. We also studied the ß4R348C polymorphism, linked to amyotrophic lateral sclerosis (ALS). This mutation depressed fusion rates of α4ß4 receptor-containing vesicles with the PM by ∼2-fold, with only a small decrease in the number of nAChRs per vesicle. The mutation also decreased the number of ER exit sites, showing that the reduced receptor insertion results from a change at an early stage in trafficking. We confirm the previous report that the mutation leads to reduced agonist-induced currents; in the cortical neurons studied, the reduction amounts to 2-3-fold. Therefore, the reduced agonist-induced currents are caused by the reduced number of α4ß4-containing vesicles reaching the membrane. Chronic nicotine exposure (0.2 µM) did not alter the PM insertion frequency or trafficking behavior of α4ß4-laden vesicles. In contrast, chronic nicotine substantially increased the number of α4ß2-containing vesicle fusions at the PM; this stage in α4ß2 nAChR up-regulation is presumably downstream from increased ER exit. Superecliptic phluorin provides a tool to monitor trafficking dynamics of nAChRs in disease and addiction.


Assuntos
Proteínas de Fluorescência Verde , Mutação , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Exposição por Inalação/efeitos adversos , Camundongos , Transporte Proteico/genética , Receptores Nicotínicos/genética , Regulação para Cima
10.
Proc Natl Acad Sci U S A ; 106(11): 4477-82, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19246390

RESUMO

Anxiety disorders are the most prevalent mental disorders in developed societies. Although roles for the prefrontal cortex, amygdala, hippocampus and mediodorsal thalamus in anxiety disorders are well documented, molecular mechanisms contributing to the functions of these structures are poorly understood. Here we report that deletion of Lynx2, a mammalian prototoxin gene that is expressed at high levels in anxiety associated brain areas, results in elevated anxiety-like behaviors. We show that LYNX2 can bind to and modulate neuronal nicotinic receptors, and that loss of Lynx2 alters the actions of nicotine on glutamatergic signaling in the prefrontal cortex. Our data identify Lynx2 as an important component of the molecular mechanisms that control anxiety, and suggest that altered glutamatergic signaling in the prefrontal cortex of Lynx2 mutant mice contributes to increased anxiety-related behaviors.


Assuntos
Ansiedade , Comportamento Animal , Glicoproteínas de Membrana/fisiologia , Neuropeptídeos/fisiologia , Animais , Transtornos de Ansiedade/etiologia , Ácido Glutâmico , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ligação Proteica , Receptores Nicotínicos/metabolismo , Transmissão Sináptica
11.
J Neurosci ; 30(29): 9877-89, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20660270

RESUMO

Dopamine (DA) release in striatum is governed by firing rates of midbrain DA neurons, striatal cholinergic tone, and nicotinic ACh receptors (nAChRs) on DA presynaptic terminals. DA neurons selectively express alpha6* nAChRs, which show high ACh and nicotine sensitivity. To help identify nAChR subtypes that control DA transmission, we studied transgenic mice expressing hypersensitive alpha6(L9'S)* receptors. alpha6(L9'S) mice are hyperactive, travel greater distance, exhibit increased ambulatory behaviors such as walking, turning, and rearing, and show decreased pausing, hanging, drinking, and grooming. These effects were mediated by alpha6alpha4* pentamers, as alpha6(L9'S) mice lacking alpha4 subunits displayed essentially normal behavior. In alpha6(L9'S) mice, receptor numbers are normal, but loss of alpha4 subunits leads to fewer and less sensitive alpha6* receptors. Gain-of-function nicotine-stimulated DA release from striatal synaptosomes requires alpha4 subunits, implicating alpha6alpha4beta2* nAChRs in alpha6(L9'S) mouse behaviors. In brain slices, we applied electrochemical measurements to study control of DA release by alpha6(L9'S) nAChRs. Burst stimulation of DA fibers elicited increased DA release relative to single action potentials selectively in alpha6(L9'S), but not WT or alpha4KO/alpha6(L9'S), mice. Thus, increased nAChR activity, like decreased activity, leads to enhanced extracellular DA release during phasic firing. Bursts may directly enhance DA release from alpha6(L9'S) presynaptic terminals, as there was no difference in striatal DA receptor numbers or DA transporter levels or function in vitro. These results implicate alpha6alpha4beta2* nAChRs in cholinergic control of DA transmission, and strongly suggest that these receptors are candidate drug targets for disorders involving the DA system.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Locomoção/fisiologia , Receptores Nicotínicos/metabolismo , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Estimulantes Ganglionares/farmacologia , Hipercinese/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Nicotina/farmacologia , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Sinaptossomos/metabolismo
12.
Curr Opin Pharmacol ; 56: 46-51, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33254061

RESUMO

Nicotinic receptors of the cholinergic system are ligand-gated ion channels, responding to the excitatory neurotransmitter, acetylcholine, and the addictive component of tobacco, nicotine. They help to transduce salient information in the environment by activating specific neural circuitry in normal and disease states. While nicotinic receptors are promising neurological and neuropsychiatric disorder targets, they have fallen out of favor after several late-stage clinical failures. Targeting the complex of the nicotinic receptor, including lynx1 accessory proteins, could be the key to unlocking the intractable nAChR for therapeutic development. Lynx1 binds to the extracellular face of the nAChR and acts as a critical modulator, suppressing memory, learning, and plasticity. Lynx1 removal in animal models leads to memory and plasticity enhancements, some of which have therapeutic relevance for neuropsychiatric and neurological disease. A review of the lynx1 accessory modulator and its role in modulating neuronal nAChRs will be discussed.


Assuntos
Receptores Nicotínicos , Proteínas Adaptadoras de Transdução de Sinal , Animais , Aprendizagem , Neurônios
13.
Artigo em Inglês | MEDLINE | ID: mdl-35378834

RESUMO

Many tools that explore models of protein complexes are also able to analyze interactions between specific residues and atoms. A comprehensive exploration of these interactions can often uncover aspects of protein-protein recognition that are not obvious using other protein analysis techniques. This paper describes DiffBond, a novel method for searching for intermolecular interactions between protein complexes while differentiating between three different types of interaction: hydrogen bonds, ionic bonds, and salt bridges. DiffBond incorporates textbook definitions of these three interactions while contending with uncertainties that are inherent in computational models of interacting proteins. We used it to examine the barnase-barstar, Rap1a-raf, and Smad2-Smad4 complexes, as well as a subset of protein complexes formed between three-finger toxins and nAChRs. Based on electrostatic interactions established by previous experimental studies, DiffBond was able to identify ionic and hydrogen bonds with high precision and recall, and identify salt bridges with high precision. In combination with other electrostatic analysis methods, DiffBond can be a useful tool in helping predict influential amino acids in protein-protein interactions and characterizing the type of interaction.

14.
Front Behav Neurosci ; 15: 703748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803621

RESUMO

Negative allosteric modulators, such as lynx1 and lynx2, directly interact with nicotinic acetylcholine receptors (nAChRs). The nAChRs are integral to cholinergic signaling in the brain and have been shown to mediate different aspects of cognitive function. Given the interaction between lynx proteins and these receptors, we examined whether these endogenous negative allosteric modulators are involved in cognitive behaviors associated with cholinergic function. We found both cell-specific and overlapping expression patterns of lynx1 and lynx2 mRNA in brain regions associated with cognition, learning, memory, and sensorimotor processing, including the prefrontal cortex (PFC), cingulate cortex, septum, hippocampus, amygdala, striatum, and pontine nuclei. Since lynx proteins are thought to play a role in conditioned associations and given the expression patterns across brain regions, we first assessed whether lynx knockout mice would differ in a cognitive flexibility task. We found no deficits in reversal learning in either the lynx1-/- or lynx2-/- knockout mice. Thereafter, sensorimotor gating was examined with the prepulse inhibition (PPI) assessment. Interestingly, we found that both male and female lynx1-/- mice exhibited a deficit in the PPI behavioral response. Given the comparable expression of lynx2 in regions involved in sensorimotor gating, we then examined whether removal of the lynx2 protein would lead to similar behavioral effects. Unexpectedly, we found that while male lynx2-/- mice exhibited a decrease in the baseline startle response, no differences were found in sensorimotor gating for either male or female lynx2-/- mice. Taken together, these studies provide insight into the expression patterns of lynx1 and lynx2 across multiple brain regions and illustrate the modulatory effects of the lynx1 protein in sensorimotor gating.

15.
FASEB Bioadv ; 3(12): 1034-1042, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938964

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are broadly expressed in the central and peripheral nervous systems, playing essential roles in cholinergic neurotransmission. The lynx family proteins, a subset of the Ly6/uPAR superfamily expressed in multiple brain regions, have been shown to bind to nAChRs and modulate their function via allosteric regulation. The binding interactions between lynx and nAChRs, however, have not been systematically quantified and compared. In this work, we characterized the interactions between lynx1 or lynx2 and α3ß4- or α7-nAChRs using single-molecule atomic force microscopy (AFM). The AFM technique allows the quantification of the off-rate of lynx-nAChR binding and of the energetic barrier width between the bound state and transition state, providing a biophysical means to compare the selectivity of lynx proteins for nAChR subtypes. Results indicate that lynx1 has a marginal preference for α7- over α3ß4-nAChRs. Strikingly, lynx2 exhibits a two order of magnitude stronger affinity for α3ß4- compared to α7-nAChRs. Together, the AFM assay serves as a valuable tool for the biophysical characterization of lynx-nAChR binding affinities. Revealing the differential affinities of lynx proteins for nAChR subtypes will help elucidate how lynx regulates nAChR-dependent functions in the brain, including nicotine addiction and other critical pathways.

16.
Neuron ; 51(5): 587-600, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16950157

RESUMO

Nicotinic acetylcholine receptors (nAChRs) affect a wide array of biological processes, including learning and memory, attention, and addiction. lynx1, the founding member of a family of mammalian prototoxins, modulates nAChR function in vitro by altering agonist sensitivity and desensitization kinetics. Here we demonstrate, through the generation of lynx1 null mutant mice, that lynx1 modulates nAChR signaling in vivo. Its loss decreases the EC(50) for nicotine by approximately 10-fold, decreases receptor desensitization, elevates intracellular calcium levels in response to nicotine, and enhances synaptic efficacy. lynx1 null mutant mice exhibit enhanced performance in specific tests of learning and memory. Consistent with reports that mutations resulting in hyperactivation of nAChRs can lead to neurodegeneration, aging lynx1 null mutant mice exhibit a vacuolating degeneration that is exacerbated by nicotine and ameliorated by null mutations in nAChRs. We conclude that lynx1 functions as an allosteric modulator of nAChR function in vivo, balancing neuronal activity and survival in the CNS.


Assuntos
Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Fatores Etários , Animais , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Glicoproteínas de Membrana/efeitos dos fármacos , Glicoproteínas de Membrana/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Mutantes , Mutação , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neuropeptídeos/efeitos dos fármacos , Neuropeptídeos/genética , Técnicas de Patch-Clamp , Receptores Nicotínicos/efeitos dos fármacos
17.
J Phys Chem B ; 124(20): 4017-4025, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32208709

RESUMO

Nicotinic acetylcholine receptors (nAChRs) participate in diverse biological processes, such as mood, learning, and addiction. Glycosylphosphatidylinositol-linked lynx1 is an allosteric modulator of nAChR function, including shifts in agonist sensitivity, reduced desensitization, and slower recovery from desensitization. This modulation is thought to be achieved by lynx1's interaction with nAChR subunits, particularly at the α4:α4 interface. In this study, we used molecular modeling and simulation to study the structure, dynamics, and interactions of lynx1 when bound to nAChRs, as well as unbound, monomeric lynx1 in membranes. Though lynx1 structures are similar in both states, its dynamics is more restricted in the bound state than in the unbound one. When bound, interactions between lynx1 and nAChR are observed to be maintained throughout the simulations. Of particular note, lynx1 demonstrates prolonged interactions with the receptor C-loop in one of the nAChR α4 subunits, a region important for agonist binding and possibly the transition between open/closed states. During interactions with lynx1, an α4 C-loop tends to be restricted in either a closed or open state, whereas the C-loop state transitions are more evident when lynx1 is unbound. Interestingly, the conformational change of the C-loop is stochastic, suggesting that lynx1 can influence nAChR (critical for its multimodal action), for instance, by shifting its agonist sensitivity and recovery from desensitization.


Assuntos
Receptores Nicotínicos , Proteínas Adaptadoras de Transdução de Sinal , Membrana Celular , Modelos Moleculares
18.
Front Pharmacol ; 10: 343, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114495

RESUMO

The cholinergic system modulates many biological functions, due to the widespread distribution of cholinergic neuronal terminals, and the diffuse release of its neurotransmitter, acetylcholine. Several layers of regulation help to refine and control the scope of this excitatory neurotransmitter system. One such regulatory mechanism is imparted through endogenous toxin-like proteins, prototoxins, which largely control the function of nicotinic receptors of the cholinergic system. Prototoxins and neurotoxins share the distinct three finger toxin fold, highly effective as a receptor binding protein, and the former are expressed in the mammalian brain, immune system, epithelium, etc. Prototoxins and elapid snake neurotoxins appear to be related through gene duplication and divergence from a common ancestral gene. Protein modulators can provide a graded response of the cholinergic system, and within the brain, stabilize neural circuitry through direct interaction with nicotinic receptors. Understanding the roles of each prototoxin (e.g., lynx1, lynx2/lypd1, PSCA, SLURP1, SLURP2, Lypd6, lypd6b, lypdg6e, PATE-M, PATE-B, etc.), their binding specificity and unique expression profile, has the potential to uncover many fascinating cholinergic-dependent mechanisms in the brain. Each family member can provide a spatially restricted level of control over nAChR function based on its expression in the brain. Due to the difficulty in the pharmacological targeting of nicotinic receptors in the brain as a result of widespread expression patterns and similarities in receptor sequences, unique interfaces between prototoxin and nicotinic receptor could provide more specific targeting than nicotinic receptors alone. As such, this family is intriguing from a long-term therapeutic perspective.

19.
Biofabrication ; 11(4): 045011, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247598

RESUMO

Neurological disorders affect millions of Americans and this number is expected to rise with the aging population. Development of drugs to treat these disorders may be facilitated by improved in vitro models that faithfully reproduce salient features of the relevant brain regions. Current 3D culture methods face challenges with reliably reproducing microarchitectural features of brain morphology such as cortical or hippocampal layers. In this work, polydimethylsiloxane (PDMS) mini-wells were used to create low aspect ratio, adherent 3D constructs where neurons self-assemble into layers. Layer self-assembly was determined to depend on the size of the PDMS mini-well. Layer formation occurred in cultures composed of primary rat cortical neurons or human induced pluripotent stem cell-derived neurons and astrocytes and was robust and reproducible. Layered 3D constructs were found to have spontaneous neural activity characterized by long bursts similar to activity in the developing cortex. The responses of layered 3D cultures to drugs were more similar to in vivo data than those of 2D cultures. 3D constructs created with this method may be thus suitable as in vitro models for drug discovery for neurological disorders.


Assuntos
Técnicas de Cultura de Células/métodos , Neurônios/citologia , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Ácido Cinurênico/farmacologia , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Tetrodotoxina/farmacologia
20.
Neuron ; 33(6): 893-903, 2002 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-11906696

RESUMO

We previously identified lynx1 as a neuronal membrane molecule related to snake alpha-neurotoxins able to modulate nAChRs. Here, we show that lynx1 colocalizes with nAChRs on CNS neurons and physically associates with nAChRs. Single-channel recordings show that lynx1 promotes the largest of three current amplitudes elicited by ACh through alpha(4)beta(2) nAChRs and that lynx1 enhances desensitization. Macroscopic recordings quantify the enhancement of desensitization onset by lynx1 and further show that it slows recovery from desensitization and increases the EC(50). These experiments establish that direct interaction of lynx1 with nAChRs can result in a novel type of functional modulation and suggest that prototoxins may play important roles in vivo by modulating functional properties of their cognate CNS receptors.


Assuntos
Glicoproteínas de Membrana/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Proteínas Ligadas por GPI , Humanos , Imuno-Histoquímica , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/química , Neuropeptídeos/genética , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Subunidades Proteicas , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores Nicotínicos/genética , Transfecção , Vasodilatadores , Xenopus laevis/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa