Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 39(Database issue): D861-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21076152

RESUMO

The RIKEN integrated database of mammals (http://scinets.org/db/mammal) is the official undertaking to integrate its mammalian databases produced from multiple large-scale programs that have been promoted by the institute. The database integrates not only RIKEN's original databases, such as FANTOM, the ENU mutagenesis program, the RIKEN Cerebellar Development Transcriptome Database and the Bioresource Database, but also imported data from public databases, such as Ensembl, MGI and biomedical ontologies. Our integrated database has been implemented on the infrastructure of publication medium for databases, termed SciNetS/SciNeS, or the Scientists' Networking System, where the data and metadata are structured as a semantic web and are downloadable in various standardized formats. The top-level ontology-based implementation of mammal-related data directly integrates the representative knowledge and individual data records in existing databases to ensure advanced cross-database searches and reduced unevenness of the data management operations. Through the development of this database, we propose a novel methodology for the development of standardized comprehensive management of heterogeneous data sets in multiple databases to improve the sustainability, accessibility, utility and publicity of the data of biomedical information.


Assuntos
Bases de Dados Factuais , Bases de Dados Genéticas , Mamíferos/genética , Animais , Humanos , Internet , Mamíferos/metabolismo , Camundongos , Integração de Sistemas , Interface Usuário-Computador
2.
J Biomed Semantics ; 8(1): 22, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629436

RESUMO

BACKGROUND: Medical ontologies are expected to contribute to the effective use of medical information resources that store considerable amount of data. In this study, we focused on disease ontology because the complicated mechanisms of diseases are related to concepts across various medical domains. The authors developed a River Flow Model (RFM) of diseases, which captures diseases as the causal chains of abnormal states. It represents causes of diseases, disease progression, and downstream consequences of diseases, which is compliant with the intuition of medical experts. In this paper, we discuss a fact repository for causal chains of disease based on the disease ontology. It could be a valuable knowledge base for advanced medical information systems. METHODS: We developed the fact repository for causal chains of diseases based on our disease ontology and abnormality ontology. This section summarizes these two ontologies. It is developed as linked data so that information scientists can access it using SPARQL queries through an Resource Description Framework (RDF) model for causal chain of diseases. RESULTS: We designed the RDF model as an implementation of the RFM for the fact repository based on the ontological definitions of the RFM. 1554 diseases and 7080 abnormal states in six major clinical areas, which are extracted from the disease ontology, are published as linked data (RDF) with SPARQL endpoint (accessible API). Furthermore, the authors developed Disease Compass, a navigation system for disease knowledge. Disease Compass can browse the causal chains of a disease and obtain related information, including abnormal states, through two web services that provide general information from linked data, such as DBpedia, and 3D anatomical images. CONCLUSIONS: Disease Compass can provide a complete picture of disease-associated processes in such a way that fits with a clinician's understanding of diseases. Therefore, it supports user exploration of disease knowledge with access to pertinent information from a variety of sources.


Assuntos
Ontologias Biológicas , Doença , Web Semântica , Gráficos por Computador , Doença/genética , Humanos
3.
Genome Inform ; 15(2): 255-65, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15706511

RESUMO

Databases have collected masses of information concerning cell signaling pathways that includes information on pathways, molecular interactions as well as molecular complexes. However we have no general data model to represent comprehensive properties of cell signaling pathways, so that this type of information has been represented by two different data models that we call 'binary relation' and 'state transition'. The disagreement between the existing models derives from lack of consensus about a factor of causality in reactions in cell signaling pathways, which is often called 'signal'. We developed an ontology named CSNO (Cell Signaling Networks Ontology) based on device ontology. As device ontology is a research product of knowledge engineering, CSNO is the first application of it to biological knowledge. CSNO defines the factor of causality called 'signal', offers an integrative viewpoint for the two different data models, explicates intrinsic distinctions between signaling and metabolic pathways, and eliminates ambiguity from representation of complex molecules.


Assuntos
Fenômenos Fisiológicos Celulares , Bases de Dados Genéticas , Transdução de Sinais , Simulação por Computador , Bases de Dados Factuais , Modelos Biológicos , Fator de Crescimento Transformador beta/metabolismo
4.
J Biomed Semantics ; 5: 23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24944781

RESUMO

BACKGROUND: Recently, exchanging data and information has become a significant challenge in medicine. Such data include abnormal states. Establishing a unified representation framework of abnormal states can be a difficult task because of the diverse and heterogeneous nature of these states. Furthermore, in the definition of diseases found in several textbooks or dictionaries, abnormal states are not directly associated with the corresponding quantitative values of clinical test data, making the processing of such data by computers difficult. RESULTS: We focused on abnormal states in the definition of diseases and proposed a unified form to describe an abnormal state as a "property," which can be decomposed into an "attribute" and a "value" in a qualitative representation. We have developed a three-layer ontological model of abnormal states from the generic to disease-specific level. By developing an is-a hierarchy and combining causal chains of diseases, 21,000 abnormal states from 6000 diseases have been captured as generic causal relations and commonalities have been found among diseases across 13 medical departments. CONCLUSIONS: Our results showed that our representation framework promotes interoperability and flexibility of the quantitative raw data, qualitative information, and generic/conceptual knowledge of abnormal states. In addition, the results showed that our ontological model have found commonalities in abnormal states among diseases across 13 medical departments.

5.
In Silico Biol ; 4(1): 81-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15089755

RESUMO

Although databases for cell signaling pathways include numbers of reaction data of the pathways, the reaction data cannot be used yet to deduce biological functions from them. For the deduction, we need systematic and consistent interpretation of biological functions of reactions in cell signaling pathways in the context of "information transmission". To address this issue, we have developed a functional ontology for cell signaling pathways, Cell Signaling Network Ontology (CSN-Ontology), which provides framework for the functional interpretation presenting some important concepts as information, selectivity, movability, and signaling rules including passage of time.


Assuntos
Bases de Dados Genéticas , Transdução de Sinais , Células/metabolismo , Simulação por Computador , Bases de Dados Factuais , Modelos Biológicos , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa