Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Small ; : e2401831, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733226

RESUMO

Quasi-2D perovskites have attracted much attention in perovskite photovoltaics due to their excellent stability. However, their photoelectric conversion efficiency (PCE) still lags 3D counterparts, particularly with high short-circuit current (JSC) loss. The quantum confinement effect is pointed out to be the sole reason, which introduces widened bandgap and poor exciton dissociation, and undermines the light capture and charge transport. Here, the gradient incorporation of formamidinium (FA) cations into quasi-2D perovskite is proposed to address this issue. It is observed that FA prefers to incorporate into the larger n value phases near the film surface compared to the smaller n value phases in the bulk, resulting in a narrow bandgap and gradient structure within the film. Through charge dynamic analysis using in situ light-dark Kelvin probe force microscopy and transient absorption spectroscopy, it is demonstrated that incorporating 10% FA significantly facilitates efficient charge transfer between low n-value phases in the bulk and high n-value nearby film surface, leading to reduced charge accumulation. Ultimately, the device based on (AA)2(MA0.9FA0.1)4Pb5I16, where AA represents n-amylamine renowned for its exceptional environmental stability as a bulky organic ligand, achieves an impressive power conversion efficiency (PCE) of 18.58% and demonstrates enhanced illumination and thermal stability.

2.
Ecotoxicol Environ Saf ; 270: 115853, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128313

RESUMO

BACKGROUND: Manganese (Mn) and iron (Fe) are essential trace elements for humans, yet excessive exposure to Mn or Fe can accumulate in the central nervous system (CNS) and cause neurotoxicity. The purpose of this study was to investigate the effects of Mn and Fe exposure, alone or in combination, on inducing oxidative stress-induced neurological damage in rat cortical and SH-SY5Y cells, and to determine whether combined exposure to these metals increases their individual toxicity. METHODS: SH-SY5Y cells and male Sprague-Dawley rats were used to observe the effects of oxidative stress-induced neurological damage induced by exposure to manganese and iron alone or in combination. To detect the expression of anti-oxidative stress-related proteins, Nrf2, HO-1, and NQO1, and the apoptosis-related proteins, Bcl2 and Bax, and the neurological damage-related protein, α-syn. To detect reactive oxygen species generation and apoptosis. To detect the expression of the rat cortical protein Nrf2. To detect the production of proinflammatory cytokines. RESULTS: We demonstrate that juvenile developmental exposure to Mn and Fe and their combination impairs cognitive performance in rats by inducing oxidative stress causing neurodegeneration in the cortex. Mn, Fe, and their combined exposure increased the expression of ROS, Bcl2, Bax, and α-syn, activated the inflammatory factors IL-6 and IL-12, inhibited the activities of SOD and GSH, and induced oxidative stress-induced neurodegeneration both in rats and SH-SY5Y cells. Combined Mn-Fe exposure attenuated the oxidative stress induced by Mn and Fe exposure alone by increasing the expression of antioxidant factors Nrf2, HO-1, and NQO1. CONCLUSION: In both in vivo and in vitro studies, manganese and iron alone or in combination induced oxidative stress, leading to neuronal damage. In contrast, combined exposure to manganese and iron mitigated the oxidative stress induced by exposure to manganese and iron alone by increasing the expression of antioxidant factors. Therefore, studies to elucidate the main causes of toxicity and establish the molecular mechanisms of toxicity should help to develop more effective therapeutic modalities in the future.


Assuntos
Manganês , Neuroblastoma , Humanos , Masculino , Ratos , Animais , Manganês/toxicidade , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ferro/metabolismo , Proteína X Associada a bcl-2/metabolismo , Ratos Sprague-Dawley , Estresse Oxidativo , Apoptose , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/farmacologia
3.
J Biol Chem ; 298(3): 101632, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085551

RESUMO

Both the DNA damage response (DDR) and the mitotic checkpoint are critical for the maintenance of genomic stability. Among proteins involved in these processes, the ataxia-telangiectasia mutated (ATM) kinase is required for both activation of the DDR and the spindle assembly checkpoint (SAC). In mitosis without DNA damage, the enzymatic activity of ATM is enhanced; however, substrates of ATM in mitosis are unknown. Using stable isotope labeling of amino acids in cell culture mass spectrometry analysis, we identified a number of proteins that can potentially be phosphorylated by ATM during mitosis. This list is highly enriched in proteins involved in cell cycle regulation and the DDR. Among them, we further validated that ATM phosphorylated budding uninhibited by benzimidazoles 3 (Bub3), a major component of the SAC, on serine 135 (Ser135) both in vitro and in vivo. During mitosis, this phosphorylation promoted activation of another SAC component, benzimidazoles 1. Mutation of Bub3 Ser135 to alanine led to a defect in SAC activation. Furthermore, we found that ATM-mediated phosphorylation of Bub3 on Ser135 was also induced by ionizing radiation-induced DNA damage. However, this event resulted in independent signaling involving interaction with the Ku70-Ku80-DNA-PKcs sensor/kinase complex, leading to efficient nonhomologous end-joining repair. Taken together, we highlight the functional significance of the crosstalk between the kinetochore-oriented signal and double-strand break repair pathways via ATM phosphorylation of Bub3 on Ser135.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Dano ao DNA , Mitose , Proteínas de Ligação a Poli-ADP-Ribose , Fuso Acromático , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Benzimidazóis/farmacologia , Proteínas de Ciclo Celular/metabolismo , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Serina-Treonina Quinases/genética , Serina/metabolismo , Fuso Acromático/metabolismo
4.
Biol Trace Elem Res ; 202(5): 2241-2252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37500820

RESUMO

The aim of study was to address the effects of manganese and iron, alone and in combination, on apoptosis of BV2 microglia cells, and to determine if combined exposure to these metals augments their individual toxicity. We used a murine microglial BV2 cell line. Cell cytotoxicity was analyzed by propidium iodide (PI) exclusion assay. Cell ROS production was analyzed by 2', 7'-dichlorofluorescin diacetate (DCFH-DA) probe staining. Pro-inflammatory cytokine production was monitored by ELISA. Cell apoptosis was analyzed by PE Annexin V/7-AAD staining. Mitochondrial membrane integrity was analyzed by flow cytometry. We used immunoblotting to analyze the effect of manganese, iron alone, or their combined exposure on the activation of caspase9, P53, Bax, and Bcl2 apoptosis signaling pathways. Caspase3 activity was determined using a Colorimetric. Manganese, iron, and their combined exposure for 24 h induced the activation of BV2 microglia cells and increased ROS production and the expression of the inflammatory cytokines, IL-1ß and TNF-α. And we also found that the apoptosis rate increased, mitochondrial membrane potential decreased, apoptosis-related proteins caspase9, P53, Bax, and Bcl2 expression increased, and caspase3 activity increased. Furthermore, we found that combined manganese-iron cytotoxicity was lower than that induced by manganese exposure alone. Manganese, iron alone, or their combination exposure can induce apoptosis in glial cells. Iron can reduce the toxicity of manganese, and there is an antagonistic effect between manganese and iron.


Assuntos
Ferro , Manganês , Camundongos , Animais , Manganês/toxicidade , Manganês/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo
5.
Materials (Basel) ; 17(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612047

RESUMO

The phase segregation of wide-bandgap perovskite is detrimental to a device's performance. We find that Sodium Benzenesulfonate (SBS) can improve the interface passivation of PTAA, thus addressing the poor wettability issue of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA). This improvement helps mitigate interface defects caused by poor contact between the perovskite and PTAA, reducing non-radiative recombination. Additionally, enhanced interface contact improves the crystallinity of the perovskite, leading to higher-quality perovskite films. By synergistically controlling the crystallization and trap passivation to reduce the phase segregation, SBS-modified perovskite solar cells (PSCs) achieved a power conversion efficiency (PCE) of 20.27%, with an open-circuit voltage (Voc) of 1.18 V, short-circuit current density (Jsc) of 20.93 mA cm-2, and fill factor (FF) of 82.31%.

6.
Int J Biol Sci ; 18(8): 3447-3457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35637973

RESUMO

Protein palmitoylation is an increasingly investigated form of post-translational lipid modification that affects protein localization, accumulation, secretion and function. Recently, emerging findings have revealed that protein palmitoylation is crucial for many tumor-related signaling pathways, such as EGFR, RAS, PD-1/PD-L1 signaling, affecting the occurrence, progression and therapeutic response of tumors. Protein palmitoylation and its modifying enzymes, including palmitoylases and depalmitoylases, are expected to be new targets for effective tumor treatment. Recognizing the significance of palmitoylation modification on protein stability, localization and downstream signal regulation, this review focuses on the regulatory roles of protein palmitoylation and its modifying enzymes in tumor cell signal transduction, aiming to bring new ideas for effective cancer prevention and treatment.


Assuntos
Lipoilação , Neoplasias , Neoplasias/terapia , Processamento de Proteína Pós-Traducional , Transporte Proteico , Transdução de Sinais
7.
Front Oncol ; 11: 658230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322378

RESUMO

Prostate cancer is one of the most common causes of cancer incidence and death in men, with the mortality caused primarily by the late-stage and metastatic forms of the disease. The mechanisms and molecular markers for prostate cancer metastasis are not fully understood. Speckle type Poz Protein (SPOP) is an E3 ubiquitin ligase adaptor that is often mutated in prostate cancer. In this study, we sequenced the SPOP gene in 198 prostate cancer patients and found 16 mutations in the cohort. Multivariate analysis revealed that SPOP mutations correlated with the clinical stage of the disease and strongly with metastasis. We identified ITCH as a candidate protein for SPOP-mediated degradation via mass spectrometry. We demonstrated the interaction between SPOP and ITCH, and found that the SPOP F133L mutation disrupted the SPOP-ITCH interaction, leading to a subsequent increase in the ITCH protein level. Further, we found that the SPOP knockdown led to higher levels of Epithelial- mesenchymal transition (EMT) proteins and increased cell invasion. Together, our results highlight the functional significance of the SPOP-ITCH pathway in prostate cancer metastasis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa