RESUMO
BACKGROUND: Schizotypy represents an index of psychosis-proneness in the general population, often associated with childhood trauma exposure. Both schizotypy and childhood trauma are linked to structural brain alterations, and it is possible that trauma exposure moderates the extent of brain morphological differences associated with schizotypy. METHODS: We addressed this question using data from a total of 1182 healthy adults (age range: 18-65 years old, 647 females/535 males), pooled from nine sites worldwide, contributing to the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Schizotypy working group. All participants completed both the Schizotypal Personality Questionnaire Brief version (SPQ-B), and the Childhood Trauma Questionnaire (CTQ), and underwent a 3D T1-weighted brain MRI scan from which regional indices of subcortical gray matter volume and cortical thickness were determined. RESULTS: A series of multiple linear regressions revealed that differences in cortical thickness in four regions-of-interest were significantly associated with interactions between schizotypy and trauma; subsequent moderation analyses indicated that increasing levels of schizotypy were associated with thicker left caudal anterior cingulate gyrus, right middle temporal gyrus and insula, and thinner left caudal middle frontal gyrus, in people exposed to higher (but not low or average) levels of childhood trauma. This was found in the context of morphological changes directly associated with increasing levels of schizotypy or increasing levels of childhood trauma exposure. CONCLUSIONS: These results suggest that alterations in brain regions critical for higher cognitive and integrative processes that are associated with schizotypy may be enhanced in individuals exposed to high levels of trauma.
Assuntos
Experiências Adversas da Infância , Testes Psicológicos , Transtorno da Personalidade Esquizotípica , Autorrelato , Adulto , Masculino , Feminino , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Transtorno da Personalidade Esquizotípica/diagnóstico por imagem , Transtorno da Personalidade Esquizotípica/psicologia , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Imageamento por Ressonância Magnética/métodosRESUMO
Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan's unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256 patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic metabolites in the medial frontal cortex (MFC, glutamate: CVR = 0.15, p < 0.001; glutamine: CVR = 0.15, p = 0.003; Glx: CVR = 0.11, p = 0.002), dorsolateral prefrontal cortex (glutamine: CVR = 0.14, p = 0.05; Glx: CVR = 0.25, p < 0.001) and thalamus (glutamate: CVR = 0.16, p = 0.008; Glx: CVR = 0.19, p = 0.008). Studies in younger, more symptomatic patients were associated with greater variability in the basal ganglia (BG glutamate with age: z = -0.03, p = 0.003, symptoms: z = 0.007, p = 0.02) and temporal lobe (glutamate with age: z = -0.03, p = 0.02), while studies with older, more symptomatic patients associated with greater variability in MFC (glutamate with age: z = 0.01, p = 0.02, glutamine with symptoms: z = 0.01, p = 0.02). For individual patient data, most studies showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate (g = -0.15, p = 0.03), higher thalamic glutamine (g = 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g = 0.28, p < 0.001). Proportion of males was negatively associated with MFC glutamate (z = -0.02, p < 0.001) and frontal white matter Glx (z = -0.03, p = 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG (z = 0.01, p = 0.01) and temporal lobe (z = 0.05, p = 0.008). Further research into the mechanisms underlying greater glutamatergic metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future treatment strategies.
Assuntos
Ácido Glutâmico , Esquizofrenia , Masculino , Humanos , Ácido Glutâmico/metabolismo , Esquizofrenia/metabolismo , Glutamina/metabolismo , Encéfalo/metabolismo , Espectroscopia de Prótons por Ressonância MagnéticaRESUMO
The ability to identify biomarkers of psychosis risk is essential in defining effective preventive measures to potentially circumvent the transition to psychosis. Using samples of people at clinical high risk for psychosis (CHR) and Healthy controls (HC) who were administered a task fMRI paradigm, we used a framework for labelling time windows of fMRI scans as 'integrated' FC networks to provide a granular representation of functional connectivity (FC). Periods of integration were defined using the 'cartographic profile' of time windows and k-means clustering, and sub-network discovery was carried out using Network Based Statistics (NBS). There were no network differences between CHR and HC groups. Within the CHR group, using integrated FC networks, we identified a sub-network negatively associated with longitudinal changes in the severity of psychotic symptoms. This sub-network comprised brain areas implicated in bottom-up sensory processing and in integration with motor control, suggesting it may be related to the demands of the fMRI task. These data suggest that extracting integrated FC networks may be useful in the investigation of biomarkers of psychosis risk.
Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Sintomas Prodrômicos , Transtornos Psicóticos/diagnóstico por imagem , Adolescente , Adulto , Encéfalo/fisiologia , Conectoma/métodos , Feminino , Humanos , Estudos Longitudinais , Masculino , Rede Nervosa/fisiologia , Valor Preditivo dos Testes , Desempenho Psicomotor/fisiologia , Transtornos Psicóticos/psicologia , Fatores de Risco , Adulto JovemAssuntos
Infecções por Coronavirus/epidemiologia , Emprego/tendências , Pandemias , Pneumonia Viral/epidemiologia , Pesquisadores/economia , Apoio à Pesquisa como Assunto/tendências , Universidades/economia , Fatores Etários , Orçamentos , COVID-19 , Humanos , Pesquisadores/normas , Fatores de TempoRESUMO
Arterial spin labeling (ASL) provides absolute quantification of resting tissue cerebral blood flow (CBF) as an entirely noninvasive approach with good reproducibility. As a result of neurovascular coupling, ASL provides a useful marker of resting neuronal activity. Recent ASL studies in individuals at clinical high risk of psychosis (CHR) have reported increased resting hippocampal perfusion compared with healthy controls. Schizotypy refers to the presence of subclinical psychotic-like experiences in healthy individuals and represents a robust framework to study neurobiological mechanisms involved in the extended psychosis phenotype while avoiding potentially confounding effects of antipsychotic medications or disease comorbidity. Here we applied pseudo-continuous ASL to examine differences in resting CBF in 21 subjects with high positive schizotypy (HS) relative to 22 subjects with low positive schizotypy (LS), as determined by the Oxford and Liverpool Inventory of Feelings and Experiences. Based on preclinical evidence that hippocampal hyperactivity leads to increased activity in mesostriatal dopamine projections, CBF in hippocampus, midbrain, and striatum was assessed. Participants with HS showed higher CBF of the right hippocampus compared to those with LS (p = .031, family-wise error corrected). No differences were detected in the striatum or midbrain. The association between increased hippocampal CBF and HS supports the notion that hippocampal hyperactivity might be a central characteristic of the extended psychosis phenotype, while hyperactivity in subcortical dopamine pathways may only emerge at a higher intensity of psychotic experiences.
Assuntos
Circulação Cerebrovascular/fisiologia , Hipocampo/fisiopatologia , Transtorno da Personalidade Esquizotípica/fisiopatologia , Adolescente , Adulto , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/fisiopatologia , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Masculino , Mesencéfalo/diagnóstico por imagem , Mesencéfalo/fisiopatologia , Acoplamento Neurovascular/fisiologia , Transtorno da Personalidade Esquizotípica/diagnóstico por imagem , Marcadores de Spin , Adulto JovemRESUMO
Background: Whilst robust preclinical and postmortem evidence suggests that altered GABAergic function is central to the development of psychosis, little is known about whether it is altered in subjects at ultra-high risk of psychosis, or its relationship to prodromal symptoms. Methods: Twenty-one antipsychotic naïve ultra-high risk individuals and 20 healthy volunteers underwent proton magnetic resonance imaging at 3T. Gamma-aminobutyric acid levels were obtained from the medial prefrontal cortex using MEGA-PRESS and expressed as peak-area ratios relative to the synchronously acquired creatine signal. Gamma-aminobutyric acid levels were then related to severity of positive and negative symptoms as measured with the Community Assessment of At-Risk Mental States. Results: Whilst we found no significant difference in gamma-aminobutyric acid levels between ultra-high risk subjects and healthy controls (P=.130), in ultra-high risk individuals, medial prefrontal cortex GABA levels were negatively correlated with the severity of negative symptoms (P=.013). Conclusion: These findings suggest that gamma-aminobutyric acidergic neurotransmission may be involved in the neurobiology of negative symptoms in the ultra-high risk state.
Assuntos
Córtex Pré-Frontal/metabolismo , Sintomas Prodrômicos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Adolescente , Adulto , Humanos , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico por imagem , Risco , Índice de Gravidade de Doença , Adulto JovemRESUMO
BACKGROUND: Cortical glutamatergic dysfunction is thought to be fundamental for psychosis development, and may lead to structural degeneration through excitotoxicity. Glutamate levels have been related to gray matter volume (GMV) alterations in people at ultra-high risk of psychosis, and we previously reported GMV changes in individuals with high schizotypy (HS), which refers to the expression of schizophrenia-like characteristics in healthy people. This study sought to examine whether GMV changes in HS subjects are related to glutamate levels. METHODS: We selected 22 healthy subjects with HS and 23 healthy subjects with low schizotypy (LS) based on their rating on a self-report questionnaire for psychotic-like experiences. Glutamate levels were measured in the bilateral anterior cingulate cortex (ACC) using proton magnetic resonance spectroscopy, and GMV was assessed using voxel-based morphometry. RESULTS: Subjects with HS showed GMV decreases in the rolandic operculum/superior temporal gyrus (pFWE = 0.045). Significant increases in GMV were also detected in HS, in the precuneus (pFWE = 0.043), thereby replicating our previous finding in a separate cohort, as well as in the ACC (pFWE = 0.041). While the HS and LS groups did not differ in ACC glutamate levels, in HS subjects ACC glutamate was negatively correlated with ACC GMV (pFWE = 0.026). Such association was absent in LS. CONCLUSIONS: Our study shows that GMV findings in schizotypy are related to glutamate levels, supporting the hypothesis that glutamatergic function may lead to structural changes associated with the expression of psychotic-like experiences.
Assuntos
Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Ácido Glutâmico/metabolismo , Substância Cinzenta/patologia , Espectroscopia de Prótons por Ressonância Magnética/métodos , Transtorno da Personalidade Esquizotípica/metabolismo , Transtorno da Personalidade Esquizotípica/patologia , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Substância Cinzenta/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Giro do Cíngulo/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Transtorno da Personalidade Esquizotípica/diagnóstico por imagem , Adulto JovemRESUMO
BACKGROUND AND HYPOTHESIS: Animal models indicate GABAergic dysfunction in the development of psychosis, and that benzodiazepine (BDZ) exposure can prevent the emergence of psychosis-relevant phenotypes. However, whether BDZ exposure influences real-world clinical outcomes in individuals at clinical high risk for psychosis (CHR-P) is unknown. STUDY DESIGN: This observational cohort study used electronic health record data from CHR-P individuals to investigate whether BDZ exposure (including hypnotics, eg, zopiclone) reduces the risk of developing psychosis and adverse clinical outcomes. Cox proportional-hazards models were employed in both the whole-unmatched sample, and a propensity score matched (PSM) subsample. STUDY RESULTS: 567 CHR-P individuals (306 male, mean[±SD] ageâ =â 22.3[±4.9] years) were included after data cleaning. The BDZ-exposed (nâ =â 105) and BDZ-unexposed (nâ =â 462) groups differed on several demographic and clinical characteristics, including psychotic symptom severity. In the whole-unmatched sample, BDZ exposure was associated with increased risk of transition to psychosis (HRâ =â 1.61; 95% CI: 1.03-2.52; Pâ =â .037), psychiatric hospital admission (HRâ =â 1.93; 95% CI: 1.13-3.29; Pâ =â .017), home visit (HRâ =â 1.64; 95% CI: 1.18-2.28; Pâ =â .004), and Accident and Emergency department attendance (HRâ =â 1.88; 95% CI: 1.31-2.72; Pâ <â .001). However, after controlling for confounding-by-indication through PSM, BDZ exposure did not modulate the risk of any outcomes (all Pâ >â .05). In an analysis restricted to antipsychotic-naïve individuals, BDZ exposure reduced the risk of transition to psychosis numerically, although this was not statistically significant (HRâ =â 0.59; 95% CI: 0.32-1.08; Pâ =â .089). CONCLUSIONS: BDZ exposure in CHR-P individuals was not associated with a reduction in the risk of psychosis transition or adverse clinical outcomes. Results in the whole-unmatched sample suggest BDZ prescription may be more likely in CHR-P individuals with higher symptom severity.
RESUMO
Current nosology claims to separate mental disorders into distinct categories that do not overlap with each other. This nosological separation is not based on underlying pathophysiology but on convention-based clustering of qualitative symptoms of disorders which are typically measured subjectively. Yet, clinical heterogeneity and diagnostic overlap in disease symptoms and dimensions within and across different diagnostic categories of mental disorders is huge. While diagnostic categories provide the basis for general clinical management, they do not describe the underlying neurobiology that gives rise to individual symptomatic presentations. The ability to incorporate neurobiology into the diagnostic framework and to stratify patients accordingly will be a critical step forward for the development of new treatments for mental disorders. Furthermore, it will also allow physicians to provide patients with a better understanding of their illness's complexities and management. To realize this ambition, a paradigm shift is needed to build an understanding of how neuropsychiatric conditions can be defined more precisely using quantitative (multimodal) biological processes and markers and thus to significantly improve treatment success. The ECNP New Frontiers Meeting 2024 set out to develop a consensus roadmap for building a new diagnostic framework for mental disorders by discussing its rationale, outlook, and consequences with all stakeholders involved. This framework would instantiate a set of principles and procedures by which research could continuously improve precision diagnostics while moving away from traditional nosology. In this meeting report, the speakers' summaries from their presentations are combined to address three key elements for generating such a roadmap, namely, the application of innovative technologies, understanding the biology of mental illness, and translating biological understanding into new approaches. In general, the meeting indicated a crucial need for a biology-informed framework to establish more precise diagnosis and treatment for mental disorders to facilitate bringing the right treatment to the right patient at the right time.
RESUMO
Elevated hippocampal perfusion has been observed in people at clinical high risk for psychosis (CHR-P). Preclinical evidence suggests that hippocampal hyperactivity is central to the pathophysiology of psychosis, and that peripubertal treatment with diazepam can prevent the development of psychosis-relevant phenotypes. The present experimental medicine study examined whether diazepam can normalize hippocampal perfusion in CHR-P individuals. Using a randomized, double-blind, placebo-controlled, crossover design, 24 CHR-P individuals were assessed with magnetic resonance imaging (MRI) on two occasions, once following a single oral dose of diazepam (5 mg) and once following placebo. Regional cerebral blood flow (rCBF) was measured using 3D pseudo-continuous arterial spin labeling and sampled in native space using participant-specific hippocampus and subfield masks (CA1, subiculum, CA4/dentate gyrus). Twenty-two healthy controls (HC) were scanned using the same MRI acquisition sequence, but without administration of diazepam or placebo. Mixed-design ANCOVAs and linear mixed-effects models were used to examine the effects of group (CHR-P placebo/diazepam vs. HC) and condition (CHR-P diazepam vs. placebo) on rCBF in the hippocampus as a whole and by subfield. Under the placebo condition, CHR-P individuals (mean [±SD] age: 24.1 [±4.8] years, 15 F) showed significantly elevated rCBF compared to HC (mean [±SD] age: 26.5 [±5.1] years, 11 F) in the hippocampus (F(1,41) = 24.7, pFDR < 0.001) and across its subfields (all pFDR < 0.001). Following diazepam, rCBF in the hippocampus (and subfields, all pFDR < 0.001) was significantly reduced (t(69) = -5.1, pFDR < 0.001) and normalized to HC levels (F(1,41) = 0.4, pFDR = 0.204). In conclusion, diazepam normalized hippocampal hyperperfusion in CHR-P individuals, consistent with evidence implicating medial temporal GABAergic dysfunction in increased vulnerability for psychosis.
Assuntos
Circulação Cerebrovascular , Estudos Cross-Over , Diazepam , Hipocampo , Imageamento por Ressonância Magnética , Transtornos Psicóticos , Humanos , Diazepam/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/diagnóstico por imagem , Hipocampo/irrigação sanguínea , Masculino , Método Duplo-Cego , Feminino , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Adulto Jovem , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/fisiopatologia , Adulto , AdolescenteRESUMO
Despite the functional impact of cognitive deficit in people with psychosis, objective cognitive assessment is not typically part of routine clinical care. This is partly due to the length of traditional assessments and the need for a highly trained administrator. Brief, automated computerised assessments could help to address this issue. We present data from an evaluation of PsyCog, a computerised, non-verbal, mini battery of cognitive tests. Healthy Control (HC) (N = 135), Clinical High Risk (CHR) (N = 233), and First Episode Psychosis (FEP) (N = 301) participants from a multi-centre prospective study were assessed at baseline, 6 months, and 12 months. PsyCog was used to assess cognitive performance at baseline and at up to two follow-up timepoints. Mean total testing time was 35.95 min (SD = 2.87). Relative to HCs, effect sizes of performance impairments were medium to large in FEP patients (composite score G = 1.21, subtest range = 0.52-0.88) and small to medium in CHR patients (composite score G = 0.59, subtest range = 0.18-0.49). Site effects were minimal, and test-retest reliability of the PsyCog composite was good (ICC = 0.82-0.89), though some practice effects and differences in data completion between groups were found. The present implementation of PsyCog shows it to be a useful tool for assessing cognitive function in people with psychosis. Computerised cognitive assessments have the potential to facilitate the evaluation of cognition in psychosis in both research and in clinical care, though caution should still be taken in terms of implementation and study design.
RESUMO
Glutamatergic and GABAergic dysfunction are implicated in the pathophysiology of schizophrenia. Previous work has shown relationships between glutamate, GABA, and brain activity in healthy volunteers. We conducted a systematic review to evaluate whether these relationships are disrupted in psychosis. Primary outcomes were the relationship between metabolite levels and fMRI BOLD response in psychosis relative to healthy volunteers. 17 case-control studies met inclusion criteria (594 patients and 538 healthy volunteers). Replicated findings included that in psychosis, positive associations between ACC glutamate levels and brain activity are reduced during resting state conditions and increased during cognitive control tasks, and negative relationships between GABA and local activation in the ACC are reduced. There was evidence that antipsychotic medication may alter the relationship between glutamate levels and brain activity. Emerging literature is providing insights into disrupted relationships between neurometabolites and brain activity in psychosis. Future studies determining a link to clinical variables may develop this approach for biomarker applications, including development or targeting novel therapeutics.
Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Ácido Glutâmico/metabolismo , Esquizofrenia/tratamento farmacológico , Imageamento por Ressonância Magnética , Ácido gama-Aminobutírico/metabolismoRESUMO
Background: Animal models indicate GABAergic dysfunction in the development of psychosis, and that benzodiazepine (BDZ) exposure can prevent the emergence of psychosis-relevant phenotypes. However, whether BDZ exposure influences the risk of psychosis in humans is unknown. Methods: This observational-cohort study used electronic health record data from 818 individuals at clinical high-risk for psychosis (CHR-P) to investigate whether BDZ exposure (including hypnotics e.g., zopiclone) reduces the risk of developing psychosis and adverse clinical outcomes. Cox proportional-hazards models were employed in both the whole-unmatched sample, and a propensity score matched (PSM) subsample. Results: 567 CHR-P individuals were included after data cleaning (105 BDZ-exposed, 462 BDZ-unexposed). 306 (54%) individuals were male, and the mean age was 22.3 years (SD 4.9). The BDZ-exposed and BDZ-unexposed groups differed on several demographic and clinical characteristics, including psychotic symptom severity. In the whole-unmatched sample, BDZ exposure was associated with increased risk of transition to psychosis (HR=1.61; 95%CI:1.03-2.52; P=0.037), psychiatric hospital admission (HR=1.93; 95%CI:1.13-3.29; P=0.017), home visit (HR=1.64; 95%CI:1.18-2.28; P=0.004), and A&E attendance (HR=1.88; 95%CI:1.31-2.72; P<0.001). However, after controlling for confounding-by-indication through PSM, BDZ exposure did not modulate the risk of any outcomes (all P>0.05). In analysis restricted to antipsychotic-naïve individuals, BDZ exposure reduced the risk of transition to psychosis at trend-level (HR=0.59; 95%CI:0.32-1.08; P=0.089). Conclusions: BDZ exposure in CHR-P individuals was not associated with a reduction in the risk of psychosis transition or other adverse clinical outcomes. Results in the whole-unmatched sample suggest BDZ prescription may be more likely in CHR-P individuals with higher symptom severity.
RESUMO
BACKGROUND AND HYPOTHESIS: Around 20% of people at clinical high risk (CHR) for psychosis later develop a psychotic disorder, but it is difficult to predict who this will be. We assessed the incidence of hearing speech (termed speech illusions [SIs]) in noise in CHR participants and examined whether this was associated with adverse clinical outcomes. STUDY DESIGN: At baseline, 344 CHR participants and 67 healthy controls were presented with a computerized white noise task and asked whether they heard speech, and whether speech was neutral, affective, or whether they were uncertain about its valence. After 2 years, we assessed whether participants transitioned to psychosis, or remitted from the CHR state, and their functioning. STUDY RESULTS: CHR participants had a lower sensitivity to the task. Logistic regression revealed that a bias towards hearing targets in stimuli was associated with remission status (OR = 0.21, P = 042). Conversely, hearing SIs with uncertain valence at baseline was associated with reduced likelihood of remission (OR = 7.72. P = .007). When we assessed only participants who did not take antipsychotic medication at baseline, the association between hearing SIs with uncertain valence at baseline and remission likelihood remained (OR = 7.61, P = .043) and this variable was additionally associated with a greater likelihood of transition to psychosis (OR = 5.34, P = .029). CONCLUSIONS: In CHR individuals, a tendency to hear speech in noise, and uncertainty about the affective valence of this speech, is associated with adverse outcomes. This task could be used in a battery of cognitive markers to stratify CHR participants according to subsequent outcomes.
Assuntos
Antipsicóticos , Ilusões , Transtornos Psicóticos , Humanos , Fala , Transtornos Psicóticos/epidemiologia , Transtornos Psicóticos/psicologia , IncidênciaRESUMO
Introduction: The impact of the clinical high-risk for psychosis (CHR-P) construct is dependent on accurately predicting outcomes. Individuals with brief limited intermittent psychotic symptoms (BLIPS) have higher risk of developing a first episode of psychosis (FEP) compared to individuals with attenuated psychotic symptoms (APS). Supplementing subgroup stratification with information from candidate biomarkers based on neurobiological parameters, such as resting-state, regional cerebral blood flow (rCBF), may help refine risk estimates. Based on previous evidence, we hypothesized that individuals with BLIPS would exhibit increased rCBF compared to APS in key regions linked to dopaminergic pathways. Methods: Data from four studies were combined using ComBat (to account for between-study differences) to analyse rCBF in 150 age- and sex-matched subjects (n = 30 healthy controls [HCs], n = 80 APS, n = 20 BLIPS and n = 20 FEP). Global gray matter (GM) rCBF was examined in addition to region-of-interest (ROI) analyses in bilateral/left/right frontal cortex, hippocampus and striatum. Group differences were assessed using general linear models: (i) alone; (ii) with global GM rCBF as a covariate; (iii) with global GM rCBF and smoking status as covariates. Significance was set at p < 0.05. Results: Whole-brain voxel-wise analyses and Bayesian ROI analyses were also conducted. No significant group differences were found in global [F(3,143) = 1,41, p = 0.24], bilateral frontal cortex [F(3,143) = 1.01, p = 0.39], hippocampus [F(3,143) = 0.63, p = 0.60] or striatum [F(3,143) = 0.52, p = 0.57] rCBF. Similar null findings were observed in lateralized ROIs (p > 0.05). All results were robust to addition of covariates (p > 0.05). No significant clusters were identified in whole-brain voxel-wise analyses (p > 0.05FWE). Weak-to-moderate evidence was found for an absence of rCBF differences between APS and BLIPS in Bayesian ROI analyses. Conclusion: On this evidence, APS and BLIPS are unlikely to be neurobiologically distinct. Due to this and the weak-to-moderate evidence for the null hypothesis, future research should investigate larger samples of APS and BLIPS through collaboration across large-scale international consortia.
RESUMO
BACKGROUND AND HYPOTHESIS: Converging lines of evidence suggest that dysfunction of cortical GABAergic inhibitory interneurons is a core feature of psychosis. This dysfunction is thought to underlie neuroimaging abnormalities commonly found in patients with psychosis, particularly in the hippocampus. These include increases in resting cerebral blood flow (CBF) and glutamatergic metabolite levels, and decreases in ligand binding to GABAA α5 receptors and to the synaptic density marker synaptic vesicle glycoprotein 2A (SV2A). However, direct links between inhibitory interneuron dysfunction and these neuroimaging readouts are yet to be established. Conditional deletion of a schizophrenia susceptibility gene, the tyrosine kinase receptor Erbb4, from cortical and hippocampal inhibitory interneurons leads to synaptic defects, and behavioral and cognitive phenotypes relevant to psychosis in mice. STUDY DESIGN: Here, we investigated how this inhibitory interneuron disruption affects hippocampal in vivo neuroimaging readouts. Adult Erbb4 conditional mutant mice (Lhx6-Cre;Erbb4F/F, n = 12) and their wild-type littermates (Erbb4F/F, n = 12) were scanned in a 9.4T magnetic resonance scanner to quantify CBF and glutamatergic metabolite levels (glutamine, glutamate, GABA). Subsequently, we assessed GABAA receptors and SV2A density using quantitative autoradiography. RESULTS: Erbb4 mutant mice showed significantly elevated ventral hippccampus CBF and glutamine levels, and decreased SV2A density across hippocampus sub-regions compared to wild-type littermates. No significant GABAA receptor density differences were identified. CONCLUSIONS: These findings demonstrate that specific disruption of cortical inhibitory interneurons in mice recapitulate some of the key neuroimaging findings in patients with psychosis, and link inhibitory interneuron deficits to non-invasive measures of brain function and neurochemistry that can be used across species.
Assuntos
Glutamina , Transtornos Psicóticos , Camundongos , Animais , Glutamina/metabolismo , Parvalbuminas/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/metabolismo , Interneurônios/metabolismo , Fenótipo , Neuroimagem , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismoRESUMO
BACKGROUND: Impaired emotion processing constitutes a key dimension of schizophrenia and a possible endophenotype of this illness. Empirical studies consistently report poorer emotion recognition performance in patients with schizophrenia as well as in individuals at enhanced risk of schizophrenia. Functional magnetic resonance imaging studies also report consistent patterns of abnormal brain activation in response to emotional stimuli in patients, in particular, decreased amygdala activation. In contrast, brain-level abnormalities in at-risk individuals are more elusive. We address this gap using an image-based meta-analysis of the functional magnetic resonance imaging literature. METHODS: Functional magnetic resonance imaging studies investigating brain responses to negative emotional stimuli and reporting a comparison between at-risk individuals and healthy control subjects were identified. Frequentist and Bayesian voxelwise meta-analyses were performed separately, by implementing a random-effect model with unthresholded group-level T-maps from individual studies as input. RESULTS: In total, 17 studies with a cumulative total of 677 at-risk individuals and 805 healthy control subjects were included. Frequentist analyses did not reveal significant differences between at-risk individuals and healthy control subjects. Similar results were observed with Bayesian analyses, which provided strong evidence for the absence of meaningful brain activation differences across the entire brain. Region of interest analyses specifically focusing on the amygdala confirmed the lack of group differences in this region. CONCLUSIONS: These results suggest that brain activation patterns in response to emotional stimuli are unlikely to constitute a reliable endophenotype of schizophrenia. We suggest that future studies instead focus on impaired functional connectivity as an alternative and promising endophenotype.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Endofenótipos , Teorema de Bayes , Emoções/fisiologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Expressão FacialRESUMO
Among the general population, individuals with subthreshold psychotic-like experiences, or psychosis proneness (PP), can be psychometrically identified and are thought to have a 10-fold increased risk of psychosis. They also show impairments in measures of emotional functioning parallel to schizophrenia. Whilst previous studies have revealed altered brain activation in patients with schizophrenia during emotional processing, it is unclear whether these alterations are also expressed in individuals with high PP. Here we used Support Vector Machine (SVM) to perform multivariate pattern classification based on brain activation during emotional processing in 20 individuals with high PP and 20 comparison subjects (low PP). In addition, we performed a standard univariate analysis based on the General Linear Model (GLM) on the same data for comparison. The experimental task involved passively viewing negative and neutral pictures from the International Affective Picture System (IAPS). SVM allowed classification of the two groups with statistically significant accuracy (p=0.017) and identified group differences within an emotional circuitry including the amygdala, insula, anterior cingulate and medial prefrontal cortex. In contrast, the standard univariate analysis did not detect any significant between-group differences. Our results reveal a distributed and subtle set of alterations in brain function within the emotional circuitry of individuals with high PP, providing neurobiological support for the notion of dysfunctional emotional circuitry in this group. In addition, these alterations are best detected using a multivariate approach rather than standard univariate methods. Further application of this approach may aid in characterising people at clinical and genetic risk of developing psychosis.
Assuntos
Encéfalo/fisiologia , Emoções/fisiologia , Transtornos Psicóticos/fisiopatologia , Afeto/fisiologia , Inteligência Artificial , Suscetibilidade a Doenças/classificação , Suscetibilidade a Doenças/fisiopatologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Neurológicos , Análise Multivariada , Rede Nervosa/fisiopatologia , Reconhecimento Automatizado de Padrão , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Transtornos Psicóticos/classificação , Medição de Risco , Esquizofrenia/fisiopatologia , Máquina de Vetores de Suporte , Adulto JovemRESUMO
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.