RESUMO
STAT2 is a transcription factor activated by type I and III IFNs. We report 23 patients with loss-of-function variants causing autosomal recessive (AR) complete STAT2 deficiency. Both cells transfected with mutant STAT2 alleles and the patients' cells displayed impaired expression of IFN-stimulated genes and impaired control of in vitro viral infections. Clinical manifestations from early childhood onward included severe adverse reaction to live attenuated viral vaccines (LAV) and severe viral infections, particularly critical influenza pneumonia, critical COVID-19 pneumonia, and herpes simplex virus type 1 (HSV-1) encephalitis. The patients displayed various types of hyperinflammation, often triggered by viral infection or after LAV administration, which probably attested to unresolved viral infection in the absence of STAT2-dependent types I and III IFN immunity. Transcriptomic analysis revealed that circulating monocytes, neutrophils, and CD8+ memory T cells contributed to this inflammation. Several patients died from viral infection or heart failure during a febrile illness with no identified etiology. Notably, the highest mortality occurred during early childhood. These findings show that AR complete STAT2 deficiency underlay severe viral diseases and substantially impacts survival.
Assuntos
COVID-19 , Encefalite por Herpes Simples , Influenza Humana , Pneumonia , Viroses , Humanos , Pré-Escolar , Viroses/genética , Alelos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/genéticaRESUMO
We investigated the molecular and cellular basis of severe combined immunodeficiency (SCID) in six patients with otofaciocervical syndrome type 2 who failed to attain T cell reconstitution after allogeneic hematopoietic stem cell transplantation, despite successful engraftment in three of them. We identified rare biallelic PAX1 rare variants in all patients. We demonstrated that these mutant PAX1 proteins have an altered conformation and flexibility of the paired box domain and reduced transcriptional activity. We generated patient-derived induced pluripotent stem cells and differentiated them into thymic epithelial progenitor cells and found that they have an altered transcriptional profile, including for genes involved in the development of the thymus and other tissues derived from pharyngeal pouches. These results identify biallelic, loss-of-function PAX1 mutations as the cause of a syndromic form of SCID due to altered thymus development.