Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Plant Physiol ; 169(4): 3002-20, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26453433

RESUMO

Light quality is an important signaling component upon which plants orchestrate various morphological processes, including seed germination and seedling photomorphogenesis. However, it is still unclear how plants, especially food crops, sense various light qualities and modulate their cellular growth and other developmental processes. Therefore, in this work, we initially profiled the transcripts of a model crop, rice (Oryza sativa), under four different light treatments (blue, green, red, and white) as well as in the dark. Concurrently, we reconstructed a fully compartmentalized genome-scale metabolic model of rice cells, iOS2164, containing 2,164 unique genes, 2,283 reactions, and 1,999 metabolites. We then combined the model with transcriptome profiles to elucidate the light-specific transcriptional signatures of rice metabolism. Clearly, light signals mediated rice gene expressions, differentially regulating numerous metabolic pathways: photosynthesis and secondary metabolism were up-regulated in blue light, whereas reserve carbohydrates degradation was pronounced in the dark. The topological analysis of gene expression data with the rice genome-scale metabolic model further uncovered that phytohormones, such as abscisate, ethylene, gibberellin, and jasmonate, are the key biomarkers of light-mediated regulation, and subsequent analysis of the associated genes' promoter regions identified several light-specific transcription factors. Finally, the transcriptional control of rice metabolism by red and blue light signals was assessed by integrating the transcriptome and metabolome data with constraint-based modeling. The biological insights gained from this integrative systems biology approach offer several potential applications, such as improving the agronomic traits of food crops and designing light-specific synthetic gene circuits in microbial and mammalian systems.


Assuntos
Perfilação da Expressão Gênica/métodos , Luz , Metaboloma/efeitos da radiação , Metabolômica/métodos , Oryza/efeitos da radiação , Transcriptoma/efeitos da radiação , Algoritmos , Simulação por Computador , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/efeitos da radiação , Genes de Plantas/genética , Metaboloma/genética , Modelos Biológicos , Modelos Genéticos , Oryza/genética , Oryza/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
2.
BMC Plant Biol ; 14: 291, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25404140

RESUMO

BACKGROUND: Salt stress is a major challenge for growth and development of plants. The mangrove tree Avicennia officinalis has evolved salt tolerance mechanisms such as salt secretion through specialized glands on its leaves. Although a number of structural studies on salt glands have been done, the molecular mechanism of salt secretion is not clearly understood. Also, studies to identify salt gland-specific genes in mangroves have been scarce. RESULTS: By subtractive hybridization (SH) of cDNA from salt gland-rich cell layers (tester) with mesophyll tissues as the driver, several Expressed Sequence Tags (ESTs) were identified. The major classes of ESTs identified include those known to be involved in regulating metabolic processes (37%), stress response (17%), transcription (17%), signal transduction (17%) and transport functions (12%). A visual interactive map generated based on predicted functional gene interactions of the identified ESTs suggested altered activities of hydrolase, transmembrane transport and kinases. Quantitative Real-Time PCR (qRT-PCR) was carried out to validate the expression specificity of the ESTs identified by SH. A Dehydrin gene was chosen for further experimental analysis, because it is significantly highly expressed in salt gland cells, and dehydrins are known to be involved in stress remediation in other plants. Full-length Avicennia officinalis Dehydrin1 (AoDHN1) cDNA was obtained by Rapid Amplification of cDNA Ends. Phylogenetic analysis and further characterization of this gene suggested that AoDHN1 belongs to group II Late Embryogenesis Abundant proteins. qRT-PCR analysis of Avicennia showed up-regulation of AoDHN1 in response to salt and drought treatments. Furthermore, some functional insights were obtained by growing E. coli cells expressing AoDHN1. Growth of E. coli cells expressing AoDHN1 was significantly higher than that of the control cells without AoDHN1 under salinity and drought stresses, suggesting that the mangrove dehydrin protein helps to mitigate the abiotic stresses. CONCLUSIONS: Thirty-four ESTs were identified to be enriched in salt gland-rich tissues of A. officinalis leaves. qRT-PCR analysis showed that 10 of these were specifically enriched in the salt gland-rich tissues. Our data suggest that one of the selected genes, namely, AoDHN1 plays an important role to mitigate salt and drought stress responses.


Assuntos
Avicennia/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Cloreto de Sódio/metabolismo , Sequência de Aminoácidos , Animais , Avicennia/efeitos dos fármacos , Avicennia/fisiologia , Sequência de Bases , DNA Complementar/química , DNA Complementar/genética , Secas , Escherichia coli/genética , Escherichia coli/metabolismo , Etiquetas de Sequências Expressas , Redes Reguladoras de Genes , Dados de Sequência Molecular , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Tolerância ao Sal , Análise de Sequência de DNA , Cloreto de Sódio/farmacologia , Regulação para Cima
3.
Plant Physiol ; 162(4): 2140-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23753178

RESUMO

Rice (Oryza sativa) is one of the major food crops in world agriculture, especially in Asia. However, the possibility of subsequent occurrence of flood and drought is a major constraint to its production. Thus, the unique behavior of rice toward flooding and drought stresses has required special attention to understand its metabolic adaptations. However, despite several decades of research investigations, the cellular metabolism of rice remains largely unclear. In this study, in order to elucidate the physiological characteristics in response to such abiotic stresses, we reconstructed what is to our knowledge the first metabolic/regulatory network model of rice, representing two tissue types: germinating seeds and photorespiring leaves. The phenotypic behavior and metabolic states simulated by the model are highly consistent with our suspension culture experiments as well as previous reports. The in silico simulation results of seed-derived rice cells indicated (1) the characteristic metabolic utilization of glycolysis and ethanolic fermentation based on oxygen availability and (2) the efficient sucrose breakdown through sucrose synthase instead of invertase. Similarly, flux analysis on photorespiring leaf cells elucidated the crucial role of plastid-cytosol and mitochondrion-cytosol malate transporters in recycling the ammonia liberated during photorespiration and in exporting the excess redox cofactors, respectively. The model simulations also unraveled the essential role of mitochondrial respiration during drought stress. In the future, the combination of experimental and in silico analyses can serve as a promising approach to understand the complex metabolism of rice and potentially help in identifying engineering targets for improving its productivity as well as enabling stress tolerance.


Assuntos
Secas , Inundações , Oryza/fisiologia , Células Vegetais/metabolismo , Aminoácidos/biossíntese , Ciclo do Ácido Cítrico , Simulação por Computador , Citosol/metabolismo , Germinação , Glicólise , Redes e Vias Metabólicas , Modelos Biológicos , Oryza/metabolismo , Fosforilação Oxidativa , Oxigênio/metabolismo , Folhas de Planta/citologia , Folhas de Planta/fisiologia , Sementes/fisiologia , Estresse Fisiológico
4.
J Exp Bot ; 65(17): 4795-806, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24913626

RESUMO

Internal aeration is crucial for root growth in waterlogged soil. A barrier to radial oxygen loss (ROL) can enhance long-distance oxygen transport via the aerenchyma to the root tip; a higher oxygen concentration at the apex enables root growth into anoxic soil. The ROL barrier is formed within the outer part of roots (OPR). Suberin and/or lignin deposited in cell walls are thought to contribute to the barrier, but it is unclear which compound is the main constituent. This study describes gene expression profiles during ROL barrier formation in rice roots to determine the relative responses of suberin and/or lignin biosyntheses for the barrier. OPR tissues were isolated by laser microdissection and their transcripts were analysed by microarray. A total of 128 genes were significantly up- or downregulated in the OPR during the barrier formation. Genes associated with suberin biosynthesis were strongly upregulated, whereas genes associated with lignin biosynthesis were not. By an ab initio analysis of the promoters of the upregulated genes, the putative cis-elements that could be associated with transcription factors, WRKY, AP2/ERF, NAC, bZIP, MYB, CBT/DREB, and MADS, were elucidated. They were particularly associated with the expression of transcription factor genes containing WRKY, AP2, and MYB domains. A semiquantitative reverse-transcription PCR analysis of genes associated with suberin biosynthesis (WRKY, CYP, and GPAT) confirmed that they were highly expressed during ROL barrier formation. Overall, these results suggest that suberin is a major constituent of the ROL barrier in roots of rice.


Assuntos
Lignina/metabolismo , Lipídeos/biossíntese , Oryza/metabolismo , Oxigênio/metabolismo , Parede Celular/metabolismo , Microdissecção , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/citologia , Oryza/genética , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo
5.
Plants (Basel) ; 12(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299125

RESUMO

Modeling biological processes and genetic-regulatory networks using in silico approaches provides a valuable framework for understanding how genes and associated allelic and genotypic differences result in specific traits. Submergence tolerance is a significant agronomic trait in rice; however, the gene-gene interactions linked with this polygenic trait remain largely unknown. In this study, we constructed a network of 57 transcription factors involved in seed germination and coleoptile elongation under submergence. The gene-gene interactions were based on the co-expression profiles of genes and the presence of transcription factor binding sites in the promoter region of target genes. We also incorporated published experimental evidence, wherever available, to support gene-gene, gene-protein, and protein-protein interactions. The co-expression data were obtained by re-analyzing publicly available transcriptome data from rice. Notably, this network includes OSH1, OSH15, OSH71, Sub1B, ERFs, WRKYs, NACs, ZFP36, TCPs, etc., which play key regulatory roles in seed germination, coleoptile elongation and submergence response, and mediate gravitropic signaling by regulating OsLAZY1 and/or IL2. The network of transcription factors was manually biocurated and submitted to the Plant Reactome Knowledgebase to make it publicly accessible. We expect this work will facilitate the re-analysis/re-use of OMICs data and aid genomics research to accelerate crop improvement.

6.
BMC Genomics ; 13: 497, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22992304

RESUMO

BACKGROUND: The potential contribution of upstream sequence variation to the unique features of orthologous genes is just beginning to be unraveled. A core subset of stress-associated bZIP transcription factors from rice (Oryza sativa) formed ten clusters of orthologous groups (COG) with genes from the monocot sorghum (Sorghum bicolor) and dicot Arabidopsis (Arabidopsis thaliana). The total cis-regulatory information content of each stress-associated COG was examined by phylogenetic footprinting to reveal ortholog-specific, lineage-specific and species-specific conservation patterns. RESULTS: The most apparent pattern observed was the occurrence of spatially conserved 'core modules' among the COGs but not among paralogs. These core modules are comprised of various combinations of two to four putative transcription factor binding site (TFBS) classes associated with either developmental or stress-related functions. Outside the core modules are specific stress (ABA, oxidative, abiotic, biotic) or organ-associated signals, which may be functioning as 'regulatory fine-tuners' and further define lineage-specific and species-specific cis-regulatory signatures. Orthologous monocot and dicot promoters have distinct TFBS classes involved in disease and oxidative-regulated expression, while the orthologous rice and sorghum promoters have distinct combinations of root-specific signals, a pattern that is not particularly conserved in Arabidopsis. CONCLUSIONS: Patterns of cis-regulatory conservation imply that each ortholog has distinct signatures, further suggesting that they are potentially unique in a regulatory context despite the presumed conservation of broad biological function during speciation. Based on the observed patterns of conservation, we postulate that core modules are likely primary determinants of basal developmental programming, which may be integrated with and further elaborated by additional intrinsic or extrinsic signals in conjunction with lineage-specific or species-specific regulatory fine-tuners. This synergy may be critical for finer-scale spatio-temporal regulation, hence unique expression profiles of homologous transcription factors from different species with distinct zones of ecological adaptation such as rice, sorghum and Arabidopsis. The patterns revealed from these comparisons set the stage for further empirical validation by functional genomics.


Assuntos
Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Sorghum/genética , Adaptação Fisiológica/genética , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/classificação , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Sítios de Ligação , Sequência Conservada , Dados de Sequência Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Estresse Fisiológico/genética
7.
BMC Plant Biol ; 12: 179, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23035751

RESUMO

BACKGROUND: Seed germination is of immense significance for agriculture and has been studied for centuries. Yet, our understanding of the molecular mechanisms underlying regulation of dormancy and germination is still in its infancy. Gibberellins are the key phytohormones that promote germination, and the DELLA protein RGL2 is the main signalling intermediate involved in this response. Germination is completely inhibited if functional RGL2 is overexpressed and/or stabilized; however, the molecular mechanisms of RGL2 function are still largely unknown. We therefore attempted to shed light onto some of the genetic events downstream of RGL2. RESULTS: Gene ontology of the transcriptome differentially regulated by RGL2, as well as extensive cross-comparison with other available microarray data indicates that RGL2-mediated inhibition of germination causes seeds to enter a state of dormancy. RGL2 also appears to differentially regulate a number of transcription factors, many of which are known to be involved in light- or phytohormone-mediated aspects of germination. A promoter analysis of differentially expressed genes identified an enrichment of several motifs that can be bound by specific transcription factors, for example GAMYB, ARF1, or Dof-type zinc fingers. We show that Dof-binding motifs indeed play a role in RGL2-mediated transcription. Using Chromatin Immunoprecipitation (ChIP), we show that RGL2 directly downregulates at least one cell wall modifying enzyme, which is predicted to constrain cell growth thereby leading to inhibition of seed germination. CONCLUSIONS: Our results reveal that RGL2 controls various aspects of germination. Through the repression of cell wall modifying enzymes, cell growth is directly constrained to inhibit germination. Furthermore, RGL2 likely interacts with various types of proteins to regulate transcription, and differentially regulates several transcription factors. Collectively, our data indicate that gibberellins, acting via RGL2, control several aspects of seed germination.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Germinação , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Parede Celular/genética , Parede Celular/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes de Plantas , Giberelinas/metabolismo , Giberelinas/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Dormência de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Transcriptoma , Transfecção
8.
Metabolites ; 12(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35629910

RESUMO

Rapid proliferation of cyanobacteria in both benthic and suspended (planktonic) habitats is a major threat to environmental safety, as they produce nuisance compounds such as cytotoxins and off-flavors, which degrade the safety and quality of water supplies. Temperature and light irradiance are two of the key factors in regulating the occurrence of algal blooms and production of major off-flavors. However, the role of these factors in regulating the growth and metabolism is poorly explored for both benthic and planktonic cyanobacteria. To fill this gap, we studied the effects of light and temperature on the growth and metabolic profiling of both benthic (Hapalosiphon sp. MRB220) and planktonic (Planktothricoides sp. SR001) environmental species collected from a freshwater reservoir in Singapore. Moreover, this study is the first report on the metabolic profiling of cyanobacteria belonging to two different habitats in response to altered environmental conditions. The highest growth rate of both species was observed at the highest light intensity (100 µmol photons/m²/s) and at a temperature of 33 °C. Systematic metabolite profiling analysis suggested that temperature had a more profound effect on metabolome of the Hapalosiphon, whereas light had a greater effect in the case of Planktothricoides. Interestingly, Planktothricoides sp. SR001 showed a specialized adaptation mechanism via biosynthesis of arginine, and metabolism of cysteine and methionine to survive and withstand higher temperatures of 38 °C and higher. Hence, the mode of strategies for coping with different light and temperature conditions was correlated with the growth and alteration in metabolic activities for physiological and ecological adaptations in both species. In addition, we putatively identified a number of unique metabolites with a broad range of antimicrobial activities in both species in response to both light and temperature. These metabolites could play a role in the dominant behavior of these species in suppressing competition during bloom formation. Overall, this study elucidated novel insights into the effects of environmental factors on the growth, metabolism, and adaptation strategies of cyanobacteria from two different habitats, and could be useful in controlling their harmful effects on human health and environmental concerns.

9.
Front Genet ; 12: 639654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796132

RESUMO

Rice has the natural morphological adaptation to germinate and elongate its coleoptile under submerged flooding conditions. The phenotypic deviation associated with the tolerance to submergence at the germination stage could be due to natural variation. However, the molecular basis of this variation is still largely unknown. A comprehensive understanding of gene regulation of different genotypes that have diverse rates of coleoptile elongation can provide significant insights into improved rice varieties. To do so, publicly available transcriptome data of five rice genotypes, which have different lengths of coleoptile elongation under submergence tolerance, were analyzed. The aim was to identify the correlation between promoter architecture, associated with transcriptional and hormonal regulation, in diverse genotype groups of rice that have different rates of coleoptile elongation. This was achieved by identifying the putative cis-elements present in the promoter sequences of genes upregulated in each group of genotypes (tolerant, highly tolerant, and extremely tolerant genotypes). Promoter analysis identified transcription factors (TFs) that are common and unique to each group of genotypes. The candidate TFs that are common in all genotypes are MYB, bZIP, AP2/ERF, ARF, WRKY, ZnF, MADS-box, NAC, AS2, DOF, E2F, ARR-B, and HSF. However, the highly tolerant genotypes interestingly possess binding sites associated with HY5 (bZIP), GBF3, GBF4 and GBF5 (bZIP), DPBF-3 (bZIP), ABF2, ABI5, bHLH, and BES/BZR, in addition to the common TFs. Besides, the extremely tolerant genotypes possess binding sites associated with bHLH TFs such as BEE2, BIM1, BIM3, BM8 and BAM8, and ABF1, in addition to the TFs identified in the tolerant and highly tolerant genotypes. The transcriptional regulation of these TFs could be linked to phenotypic variation in coleoptile elongation in response to submergence tolerance. Moreover, the results indicate a cross-talk between the key TFs and phytohormones such as gibberellic acid, abscisic acid, ethylene, auxin, jasmonic acid, and brassinosteroids, for an altered transcriptional regulation leading to differences in germination and coleoptile elongation under submergence. The information derived from the current in silico analysis can potentially assist in developing new rice breeding targets for direct seeding.

10.
Plant Sci ; 310: 110977, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315593

RESUMO

Lettuce is commonly consumed around the world, spurring the cultivation of green- and red-leaf varieties in indoor farms. One common consideration for indoor cultivation is the light wavelengths/spectrum, which is an important factor for regulating growth, development, and the accumulation of metabolites. Here, we show that Batavia lettuce (Lactuca sativa cv. "Batavia") grown under a combination of red (R) and blue (B) light (RB, R:B = 3:1) displayed better growth and accumulated more anthocyanin than lettuce grown under fluorescent light (FL). Anthocyanin concentration was also higher in mature stage than early stage lettuce. By performing a comparative transcriptome analysis of early and mature stage lettuce grown under RB or FL (RB or FL-lettuce), we found that RB induced the expression of genes related to oxidation-reduction reaction and secondary metabolite biosynthesis. Furthermore, plant age affected the transcriptome response to RB, as mature RB-lettuce had six times more differentially expressed genes than early RB-lettuce. Also, genes related to the accumulation of secondary metabolites such as flavonoids and anthocyanins were more induced in mature RB-lettuce. A detailed analysis of the anthocyanin biosynthesis pathway revealed key genes that were up-regulated in mature RB-lettuce. Concurrently, branching pathways for flavonol and lignin precursors were down-regulated.


Assuntos
Antocianinas/metabolismo , Lactuca/metabolismo , Luz , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Lactuca/efeitos da radiação , Fotossíntese/efeitos da radiação , Transcriptoma/genética
11.
BMC Plant Biol ; 10: 16, 2010 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-20100339

RESUMO

BACKGROUND: The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10 degrees C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach. RESULTS: Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10 degrees C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters.Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2 spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters. CONCLUSION: Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries.


Assuntos
Temperatura Baixa , Redes Reguladoras de Genes , Oryza/genética , Estresse Oxidativo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxirredução , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , RNA de Plantas/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Plant Cell Environ ; 33(12): 2209-30, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20807373

RESUMO

The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Oryza/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Temperatura Baixa , Topos Floridos/crescimento & desenvolvimento , Oryza/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo
13.
Mol Plant Pathol ; 21(4): 527-540, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32068953

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) is a vascular pathogen that causes leaf blight in rice, leading to severe yield losses. Since the usage of chemical control methods has not been very promising for the future disease management, it is of high importance to systematically gain new insights about Xoo virulence and pathogenesis, and devise effective strategies to combat the rice disease. To do this, we reconstructed a genome-scale metabolic model of Xoo (iXOO673) and validated the model predictions using culture experiments. Comparison of the metabolic architecture of Xoo and other plant pathogens indicated that the Entner-Doudoroff pathway is a more common feature in these bacteria than previously thought, while suggesting some of the unique virulence mechanisms related to Xoo metabolism. Subsequent constraint-based flux analysis allowed us to show that Xoo modulates fluxes through gluconeogenesis, glycogen biosynthesis, and degradation pathways, thereby exacerbating the leaf blight in rice exposed to nitrogenous fertilizers, which is remarkably consistent with published experimental literature. Moreover, model-based interrogation of transcriptomic data revealed the metabolic components under the diffusible signal factor regulon that are crucial for virulence and survival in Xoo. Finally, we identified promising antibacterial targets for the control of leaf blight in rice by using gene essentiality analysis.


Assuntos
Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia de Sistemas
14.
BMC Genomics ; 8: 175, 2007 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-17577400

RESUMO

BACKGROUND: Plants respond to low temperature through an intricately coordinated transcriptional network. The CBF/DREB-regulated network of genes has been shown to play a prominent role in freeze-tolerance of Arabidopsis through the process of cold acclimation (CA). Recent evidence also showed that the CBF/DREB regulon is not unique to CA but evolutionarily conserved between chilling-insensitive (temperate) and chilling-sensitive (warm-season) plants. In this study, the wide contrast in chilling sensitivity between indica and japonica rice was used as model to identify other regulatory clusters by integrative analysis of promoter architecture (ab initio) and gene expression profiles. RESULTS: Transcriptome analysis in chilling tolerant japonica rice identified a subset of 121 'early response' genes that were upregulated during the initial 24 hours at 10 degrees C. Among this group were four transcription factors including ROS-bZIP1 and another larger sub-group with a common feature of having as1/ocs-like elements in their promoters. Cold-induction of ROS-bZIP1 preceded the induction of as1/ocs-like element-containing genes and they were also induced by exogenous H2O2 at ambient temperature. Coordinated expression patterns and similar promoter architectures among the 'early response' genes suggest that they belong to a potential regulon (ROS-bZIP-as1/ocs regulatory module) that responds to elevated levels of ROS during chilling stress. Cultivar-specific expression signatures of the candidate genes indicate a positive correlation between the activity of the putative regulon and genotypic variation in chilling tolerance. CONCLUSION: A hypothetical model of an ROS-mediated regulon (ROS-bZIP-as1/ocs) triggered by chilling stress was assembled in rice. Based on the current results, it appears that this regulon is independent of ABA and CBF/DREB, and that its activation has an important contribution in configuring the rapid responses of rice seedlings to chilling stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Genômica , Peróxido de Hidrogênio/farmacologia , Oryza/genética , Oryza/fisiologia , Sequência de Bases , Temperatura Baixa , Perfilação da Expressão Gênica , Genes de Plantas , Dados de Sequência Molecular , Família Multigênica , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio , Temperatura , Fatores de Transcrição/metabolismo
15.
Sci Rep ; 7(1): 10031, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855698

RESUMO

Salinity affects growth and development of plants, but mangroves exhibit exceptional salt tolerance. With direct exposure to salinity, mangrove roots possess specific adaptations to tolerate salt stress. Therefore, studying the early effects of salt on mangrove roots can help us better understand the tolerance mechanisms. Using two-month-old greenhouse-grown seedlings of the mangrove tree Avicennia officinalis subjected to NaCl treatment, we profiled gene expression changes in the roots by RNA-sequencing. Of the 6547 genes that were differentially regulated in response to salt treatment, 1404 and 5213 genes were significantly up- and down-regulated, respectively. By comparative genomics, 93 key salt tolerance-related genes were identified of which 47 were up-regulated. Upon placing all the differentially expressed genes (DEG) in known signaling pathways, it was evident that most of the DEGs involved in ethylene and auxin signaling were up-regulated while those involved in ABA signaling were down-regulated. These results imply that ABA-independent signaling pathways also play a major role in salt tolerance of A. officinalis. Further, ethylene response factors (ERFs) were abundantly expressed upon salt treatment and the Arabidopsis mutant aterf115, a homolog of AoERF114 is characterized. Overall, our results would help in understanding the possible molecular mechanism underlying salt tolerance in plants.


Assuntos
Avicennia/genética , Regulação da Expressão Gênica de Plantas , Estresse Salino , Transcriptoma , Avicennia/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transdução de Sinais
16.
Nucleic Acids Res ; 32(Web Server issue): W230-4, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15215386

RESUMO

We present Dragon TF Association Miner (DTFAM), a system for text-mining of PubMed documents for potential functional association of transcription factors (TFs) with terms from Gene Ontology (GO) and with diseases. DTFAM has been trained and tested in the selection of relevant documents on a manually curated dataset containing >3000 PubMed abstracts relevant to transcription control. On our test data the system achieves sensitivity of 80% with specificity of 82%. DTFAM provides comprehensive tabular and graphical reports linking terms to relevant sets of documents. These documents are color-coded for easier inspection. DTFAM complements the existing biological resources by collecting, assessing, extracting and presenting associations that can reveal some of the not so easily observable connections among the entities found which could explain the functions of TFs and help decipher parts of gene transcriptional regulatory networks. DTFAM summarizes information from a large volume of documents saving time and making analysis simpler for individual users. DTFAM is freely available for academic and non-profit users at http://research.i2r.a-star.edu.sg/DRAGON/TFAM/.


Assuntos
Software , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Internet , PubMed , Transdução de Sinais , Fatores de Transcrição/fisiologia , Transcrição Gênica , Interface Usuário-Computador
17.
Front Plant Sci ; 7: 1795, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965696

RESUMO

Crop productivity is severely limited by various biotic and abiotic stresses. Thus, it is highly needed to understand the underlying mechanisms of environmental stress response and tolerance in plants, which could be addressed by systems biology approach. To this end, high-throughput omics profiling and in silico modeling can be considered to explore the environmental effects on phenotypic states and metabolic behaviors of rice crops at the systems level. Especially, the advent of constraint-based metabolic reconstruction and analysis paves a way to characterize the plant cellular physiology under various stresses by combining the mathematical network models with multi-omics data. Rice metabolic networks have been reconstructed since 2013 and currently six such networks are available, where five are at genome-scale. Since their publication, these models have been utilized to systematically elucidate the rice abiotic stress responses and identify agronomic traits for crop improvement. In this review, we summarize the current status of the existing rice metabolic networks and models with their applications. Furthermore, we also highlight future directions of rice modeling studies, particularly stressing how these models can be used to contextualize the affluent multi-omics data that are readily available in the public domain. Overall, we envisage a number of studies in the future, exploiting the available metabolic models to enhance the yield and quality of rice and other food crops.

18.
Rice (N Y) ; 9(1): 51, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27681580

RESUMO

BACKGROUND: Rice is the only crop that germinates and elongates the coleoptile under complete submergence. It has been shown that alcohol dehydrogenase 1 (ADH1)-deficient mutant of rice with reduced alcohol dehydrogenase activity (rad) and reduced ATP level, is viable with much reduced coleoptile elongation under such condition. To understand the altered transcriptional regulatory mechanism of this mutant, we aimed to establish possible relationships between gene expression and cis-regulatory information content. FINDINGS: We performed promoter analysis of the publicly available differentially expressed genes in ADH1 mutant. Our results revealed that a crosstalk between a number of key transcription factors (TFs) and different phytohormones altered transcriptional regulation leading to the survival of the mutant. Amongst the key TFs identified, we suggest potential involvement of MYB, bZIP, ARF and ERF as transcriptional activators and WRKY, ABI4 and MYC as transcriptional repressors of coleoptile elongation to maintain metabolite levels for the cell viability. Out of the repressors, WRKY TF is most likely playing a major role in the alteration of the physiological implications associated with the cell survival. CONCLUSIONS: Overall, our analysis provides a possible transcriptional regulatory mechanism underlying the survival of the rad mutant under complete submergence in an energy crisis condition and develops hypotheses for further experimental validation.

19.
Plant Signal Behav ; 11(6): e1184808, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27172458

RESUMO

Carotenoids and phenolic compounds are important subgroups of secondary metabolites having an array of functional roles in the growth and development of plants. They are also major sources for health and pharmaceutical benefits, and industrially relevant biochemicals. The control of the biosynthesis of these compounds depends mainly on the quality and quantity of different light sources. Thus, to unravel their light-specific transcriptional regulation in rice leaves, we performed promoter analysis of genes upregulated in response to blue and red lights. The analysis results suggested a crosstalk between different phytohormones and the involvement of key transcription factors such as bHLH, bZIP, MYB, WRKY, ZnF and ERF [jasmonic acid inducible], in the regulation of higher accumulation of carotenoids and phenolic compounds upon blue light. Overall, the current analysis could improve our understanding of the light-specific regulatory mechanism involved in the biosynthesis of secondary metabolites via possible critical links between different TFs in rice leaves.


Assuntos
Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Oryza/genética , Oryza/efeitos da radiação , Fenóis/metabolismo , Folhas de Planta/genética , Transcrição Gênica/efeitos da radiação , Modelos Biológicos , Folhas de Planta/efeitos da radiação
20.
Plant Sci ; 242: 224-239, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26566840

RESUMO

In this study, we have integrated a rice genome-scale metabolic network and the transcriptome of a drought-tolerant rice line, DK151, to identify the major transcriptional regulators involved in metabolic adjustments necessary for adaptation to drought. This was achieved by examining the differential expressions of transcription factors and metabolic genes in leaf, root and young panicle of rice plants subjected to drought stress during tillering, booting and panicle elongation stages. Critical transcription factors such as AP2/ERF, bZIP, MYB and NAC that control the important nodes in the gene regulatory pathway were identified through correlative analysis of the patterns of spatio-temporal expression and cis-element enrichment. We showed that many of the candidate transcription factors involved in metabolic adjustments were previously linked to phenotypic variation for drought tolerance. This approach represents the first attempt to integrate models of transcriptional regulation and metabolic pathways for the identification of candidate regulatory genes for targeted selection in rice breeding.


Assuntos
Secas , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Genoma de Planta/genética , Redes e Vias Metabólicas/genética , Oryza/genética , Adaptação Fisiológica/genética , Sequência de Bases , Análise por Conglomerados , Modelos Genéticos , Motivos de Nucleotídeos/genética , Melhoramento Vegetal/métodos , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa