Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162975

RESUMO

Basic helix-loop-helix (bHLH) transcription factors are evolutionarily conserved and structurally similar proteins important in development. The temporospatial expression of atonal bHLH transcription factor 7 (ATOH7) directs the differentiation of retinal ganglion cells and mutations in the human gene lead to vitreoretinal and/or optic nerve abnormalities. Characterization of pathogenic ATOH7 mutations is needed to understand the functions of the conserved bHLH motif. The published ATOH7 in-frame deletion p.(Arg41_Arg48del) removes eight highly conserved amino acids in the basic domain. We functionally characterized the mutant protein by expressing V5-tagged ATOH7 constructs in human embryonic kidney 293T (HEK293T) cells for subsequent protein analyses, including Western blot, cycloheximide chase assays, Förster resonance energy transfer fluorescence lifetime imaging, enzyme-linked immunosorbent assays and dual-luciferase assays. Our results indicate that the in-frame deletion in the basic domain causes mislocalization of the protein, which can be rescued by a putative dimerization partner transcription factor 3 isoform E47 (E47), suggesting synergistic nuclear import. Furthermore, we observed (i) increased proteasomal degradation of the mutant protein, (ii) reduced protein heterodimerization, (iii) decreased DNA-binding and transcriptional activation of a reporter gene, as well as (iv) inhibited E47 activity. Altogether our observations suggest that the DNA-binding basic domain of ATOH7 has additional roles in regulating the nuclear import, dimerization, and protein stability.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas do Tecido Nervoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA , Células HEK293 , Humanos , Proteínas Mutantes , Proteínas do Tecido Nervoso/metabolismo
2.
BMC Genomics ; 22(1): 547, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34273949

RESUMO

BACKGROUND: Whole genome duplication (WGD) events are common in the evolutionary history of many living organisms. For decades, researchers have been trying to understand the genetic and epigenetic impact of WGD and its underlying molecular mechanisms. Particular attention was given to allopolyploid study systems, species resulting from an hybridization event accompanied by WGD. Investigating the mechanisms behind the survival of a newly formed allopolyploid highlighted the key role of DNA methylation. With the improvement of high-throughput methods, such as whole genome bisulfite sequencing (WGBS), an opportunity opened to further understand the role of DNA methylation at a larger scale and higher resolution. However, only a few studies have applied WGBS to allopolyploids, which might be due to lack of genomic resources combined with a burdensome data analysis process. To overcome these problems, we developed the Automated Reproducible Polyploid EpiGenetic GuIdance workflOw (ARPEGGIO): the first workflow for the analysis of epigenetic data in polyploids. This workflow analyzes WGBS data from allopolyploid species via the genome assemblies of the allopolyploid's parent species. ARPEGGIO utilizes an updated read classification algorithm (EAGLE-RC), to tackle the challenge of sequence similarity amongst parental genomes. ARPEGGIO offers automation, but more importantly, a complete set of analyses including spot checks starting from raw WGBS data: quality checks, trimming, alignment, methylation extraction, statistical analyses and downstream analyses. A full run of ARPEGGIO outputs a list of genes showing differential methylation. ARPEGGIO was made simple to set up, run and interpret, and its implementation ensures reproducibility by including both package management and containerization. RESULTS: We evaluated ARPEGGIO in two ways. First, we tested EAGLE-RC's performance with publicly available datasets given a ground truth, and we show that EAGLE-RC decreases the error rate by 3 to 4 times compared to standard approaches. Second, using the same initial dataset, we show agreement between ARPEGGIO's output and published results. Compared to other similar workflows, ARPEGGIO is the only one supporting polyploid data. CONCLUSIONS: The goal of ARPEGGIO is to promote, support and improve polyploid research with a reproducible and automated set of analyses in a convenient implementation. ARPEGGIO is available at https://github.com/supermaxiste/ARPEGGIO .


Assuntos
Metilação de DNA , Software , Epigênese Genética , Humanos , Poliploidia , Reprodutibilidade dos Testes , Fluxo de Trabalho
3.
Proc Natl Acad Sci U S A ; 110(24): 9856-61, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716654

RESUMO

Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous disorder characterized by abnormal vascularization of the peripheral retina, which can result in retinal detachment and severe visual impairment. In a large Dutch FEVR family, we performed linkage analysis, exome sequencing, and segregation analysis of DNA variants. We identified putative disease-causing DNA variants in proline-alanine-rich ste20-related kinase (c.791dup; p.Ser265ValfsX64) and zinc finger protein 408 (ZNF408) (c.1363C>T; p.His455Tyr), the latter of which was also present in an additional Dutch FEVR family that subsequently appeared to share a common ancestor with the original family. Sequence analysis of ZNF408 in 132 additional individuals with FEVR revealed another potentially pathogenic missense variant, p.Ser126Asn, in a Japanese family. Immunolocalization studies in COS-1 cells transfected with constructs encoding the WT and mutant ZNF408 proteins, revealed that the WT and the p.Ser126Asn mutant protein show complete nuclear localization, whereas the p.His455Tyr mutant protein was localized almost exclusively in the cytoplasm. Moreover, in a cotransfection assay, the p.His455Tyr mutant protein retains the WT ZNF408 protein in the cytoplasm, suggesting that this mutation acts in a dominant-negative fashion. Finally, morpholino-induced knockdown of znf408 in zebrafish revealed defects in developing retinal and trunk vasculature, that could be rescued by coinjection of RNA encoding human WT ZNF408 but not p.His455Tyr mutant ZNF408. Together, our data strongly suggest that mutant ZNF408 results in abnormal retinal vasculogenesis in humans and is associated with FEVR.


Assuntos
Mutação , Vasos Retinianos/metabolismo , Vitreorretinopatia Proliferativa/genética , Proteínas de Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Saúde da Família , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Microscopia de Fluorescência , Dados de Sequência Molecular , Linhagem , Vasos Retinianos/embriologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitreorretinopatia Proliferativa/metabolismo , Vitreorretinopatia Proliferativa/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
4.
Hum Mol Genet ; 21(12): 2619-30, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22394677

RESUMO

Mutations in Norrin, the ligand of a receptor complex consisting of FZD4, LRP5 and TSPAN12, cause severe developmental blood vessel defects in the retina and progressive loss of the vascular system in the inner ear, which lead to congenital blindness and progressive hearing loss, respectively. We now examined molecular pathways involved in developmental retinal angiogenesis in a mouse model for Norrie disease. Comparison of morphometric parameters of the superficial retinal vascular plexus (SRVP), including the number of filopodia, vascular density and number of branch points together with inhibition of Notch signaling by using DAPT, suggest no direct link between Norrin and Notch signaling during formation of the SRVP. We noticed extensive vessel crossing within the SRVP, which might be a loss of Wnt- and MAP kinase-characteristic feature. In addition, endomucin was identified as a marker for central filopodia, which were aligned in a thorn-like fashion at P9 in Norrin knockout (Ndp(y/-)) mice. We also observed elevated mural cell coverage in the SRVP of Ndp(y/-) mice and explain it by an altered expression of PDGFß and its receptor (PDGFRß). In vivo cell proliferation assays revealed a reduced proliferation rate of isolectin B4-positive cells in the SRVP from Ndp(y/-) mice at postnatal day 6 and a decreased mitogenic activity of mutant compared with the wild-type Norrin. Our results suggest that the delayed outgrowth of the SRVP and decreased angiogenic sprouting in Ndp(y/-) mice are direct effects of the reduced proliferation of endothelial cells from the SRVP.


Assuntos
Proliferação de Células , Proteínas do Olho/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vasos Retinianos/citologia , Vasos Retinianos/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Dipeptídeos/farmacologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas do Olho/genética , Células HEK293 , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Pseudópodes/efeitos dos fármacos , Receptor Notch1/metabolismo , Retina/metabolismo , Retina/patologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Vasos Retinianos/crescimento & desenvolvimento , Proteínas Serrate-Jagged , Transdução de Sinais/efeitos dos fármacos
5.
Nat Commun ; 10(1): 5243, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748531

RESUMO

Familial exudative vitreoretinopathy (FEVR) is a human disease characterized by defective retinal angiogenesis and associated complications that can result in vision loss. Defective Wnt/ß-catenin signaling is an established cause of FEVR, whereas other molecular alterations contributing to the disease remain insufficiently understood. Here, we show that integrin-linked kinase (ILK), a mediator of cell-matrix interactions, is indispensable for retinal angiogenesis. Inactivation of the murine Ilk gene in postnatal endothelial cells results in sprouting defects, reduced endothelial proliferation and disruption of the blood-retina barrier, resembling phenotypes seen in established mouse models of FEVR. Retinal vascularization defects are phenocopied by inducible inactivation of the gene for α-parvin (Parva), an interactor of ILK. Screening genomic DNA samples from exudative vitreoretinopathy patients identifies three distinct mutations in human ILK, which compromise the function of the gene product in vitro. Together, our data suggest that defective cell-matrix interactions are linked to Wnt signaling and FEVR.


Assuntos
Barreira Hematorretiniana/metabolismo , Células Endoteliais/metabolismo , Vitreorretinopatias Exsudativas Familiares/genética , Neovascularização Fisiológica/genética , Proteínas Serina-Treonina Quinases/genética , Vasos Retinianos/crescimento & desenvolvimento , Animais , Células Endoteliais/citologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Proteínas dos Microfilamentos/genética , Fenótipo , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa