Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(33): 18447-18454, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552123

RESUMO

Molecular electronic spin qubits have great potential for use in quantum information science applications because their structure can be rationally tuned using synthetic chemistry. Their integration into a new class of materials, ion-paired frameworks, allows for the formation of ordered arrays of these molecular spin qubits. Three ion-paired frameworks with varying densities of paramagnetic Cu(II) porphyrins were isolated as micron-sized crystals suitable for characterization by single-crystal X-ray diffraction. Pulse-electron paramagnetic resonance (EPR) spectroscopy probed the spin coherence of these materials at temperatures up to 140 K. The crystals with the longest Cu-Cu distances had a spin-spin relaxation time (Tm) of 207 ns and a spin-lattice relaxation time (T1) of 1.8 ms at 5 K, which decreased at elevated temperature because of spin-phonon coupling. Crystals with shorter Cu-Cu distances also had lower T1 values because of enhanced cross-relaxation from qubit-qubit dipolar coupling. Frameworks with shorter Cu-Cu distances exhibited lower Tm values because of the increased interactions between qubits within the frameworks. Incorporating molecular electronic spin qubits in ion-paired frameworks enables control of composition, spacing, and interqubit interactions, providing a rational means to extend spin relaxation times.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa