Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13225, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38851834

RESUMO

Adsorption process plays an important role in the remediation of heavy metals (HMs) from wastewater. A laboratory trial was conducted to investigate effective parameters for improving the bio-adsorption removal of HMs. SEM, EDX, BET, and FTIR techniques were applied to characterize the calcined layer double hydroxide (Cal-LDH), pectin (PC), and Cal-LDH-PC composite prepared from Licorice pomace. The adsorption of zinc (Zn) cadmium, nickel (Ni) and lead (Pb) onto the most efficient sorbent was investigated using RSM methodology with operational factors such as concentration, reaction time, sorbent dose, and pH. The results related to FTIR showed that Cal-LDH-PC had the highest number of functional groups. Based on the SEM results Cal-LDH had a low surface area (9.36 m2 g-1) and a small pore size (9.22 nm). After the modification process (Cal-LDH-PC), the values of surface area and pore size increased by 13-fold (120 m2 g-1) and 1.5-fold (18 nm), respectively. Cal-LDH had high adsorption performance, more cavities, stability, various functional groups, and excessive carbon and oxygen content, which make it efficient and powerful in removing HMs from wastewater. The optimal condition for achieving the removal efficiency (RE%) values of metals was determined to be 80.79 mg L-1, 100 min, 0.167 g L-1, and 9 for concentration, reaction time, sorbent dose, and pH, respectively. Maximum adsorption capacity and RE (%) were 300 mg g-1 and 99% for Zn. According to the results concentration had a major impact on RE% (except for Ni), while for Ni, adsorbent dose had the most significant impact. The present study introduced Cal-LDH-PC prepared from Licorice pomace as a capable, useful and economical sorbent for HMs removal from polluted environments. Taguchi's statistical method is distinguished as an economic method with easier interpretation, while the RSM approach is more accurate, and it can also check the interaction of parameters.

2.
Heliyon ; 10(7): e28849, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601511

RESUMO

In recent years, the production of plastic has been estimated to reach 300 million tonnes, and nearly the same amount has been dumped into the waters. This waste material causes long-term damage to the ecosystem, economic sectors, and aquatic environments. Fragmentation of plastics to microplastics has been detected in the world's oceans, which causes a serious global impact. It is found that most of this debris ends up in water environments. Hence, this research aims to review the microbial degradation of microplastic, especially in water bodies and coastal areas. Aerobic bacteria will oxidize and decompose the microplastic from this environment to produce nutrients. Furthermore, plants such as microalgae can employ this nutrient as an energy source, which is the byproduct of microplastic. This paper highlights the reduction of plastics in the environment, typically by ultraviolet reduction, mechanical abrasion processes, and utilization by microorganisms and microalgae. Further discussion on the utilization of microplastics in the current technologies comprised of mechanical, chemical, and biological methods focusing more on the microalgae and microbial pathways via fuel cells has been elaborated. It can be denoted in the fuel cell system, the microalgae are placed in the bio-cathode section, and the anode chamber consists of the colony of microorganisms. Hence, electric current from the fuel cell can be generated to produce clean energy. Thus, the investigation on the emerging technologies via fuel cell systems and the potential use of microplastic pollutants for consumption has been discussed in the paper. The biochemical changes of microplastic and the interaction of microalgae and bacteria towards the degradation pathways of microplastic are also being observed in this review.

3.
Water Res ; 265: 122227, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39128333

RESUMO

Sorption-based atmospheric water harvesting (SAWH) is a promising solution for localized high-quality water production. Application of SAWH indoors offers dual benefits of on-site water generation and humidity control. This study evaluated the use of SAWH for water production in residential or office buildings, employing a portable zeolite-based SAWH device. Over the twelve-month testing period in the arid southwestern USA, the device achieved a median water yield of 3.6 L/day at a cost 30 % less than bottled water sold in the U.S. A mathematical model was developed for predicting water yield under different temperature and relative humidity (RH) conditions. Daily water yields were well fitted with the modified Langmuir model, with absolute humidity serving as the only prediction variable. Water extracted from a well-ventilated office building generally met the drinking water standards set by USEPA. However, elevated levels of dissolved organic carbon (DOC) were detected in the samples collected from the residential house (median = 32.6 mg/L), emphasizing the influence of human activities (e.g., cooking) on the emission of volatile and semi-volatile organic compounds in the air, which consequently reside in harvested water. Aldehydes and volatile fatty acids (formate, acetate) comprised roughly 50 % of the DOC found in the AWE water. A carbon fiber filter was not effective at removing these substances, highlighting the need for further research into effective treatment methods for DOC management before the safe use of AWE water. Overall, this study provides critical insights for the practical application of indoor SAWH as a decentralized source of high-quality water and emphasizes the need to identify and manage DOC for its safe use.

4.
J Hazard Mater ; 471: 134429, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691929

RESUMO

The adsorption process efficiently removes per- and polyfluoroalkyl substances (PFAS) from water, but managing exhausted adsorbents presents notable environmental and economic challenges. Conventional disposal methods, such as incineration, may reintroduce PFAS into the environment. Therefore, advanced regeneration techniques are imperative to prevent leaching during disposal and enhance sustainability and cost-effectiveness. This review critically evaluates thermal and chemical regeneration approaches for PFAS-laden adsorbents, elucidating their operational mechanisms, the influence of water quality parameters, and their inherent advantages and limitations. Thermal regeneration achieves notable desorption efficiencies, reaching up to 99% for activated carbon. However, it requires significant energy input and risks compromising the adsorbent's structural integrity, resulting in considerable mass loss (10-20%). In contrast, chemical regeneration presents a diverse efficiency landscape across different regenerants, including water, acidic/basic, salt, solvent, and multi-component solutions. Multi-component solutions demonstrate superior efficiency (>90%) compared to solvent-based solutions (12.50%), which, in turn, outperform salt (2.34%), acidic/basic (1.17%), and water (0.40%) regenerants. This hierarchical effectiveness underscores the nuanced nature of chemical regeneration, significantly influenced by factors such as regenerant composition, the molecular structure of PFAS, and the presence of organic co-contaminants. Exploring the conditional efficacy of thermal and chemical regeneration methods underscores the imperative of strategic selection based on specific types of PFAS and material properties. By emphasizing the limitations and potential of particular regeneration schemes and advocating for future research directions, such as exploring persulfate activation treatments, this review aims to catalyze the development of more effective regeneration processes. The ultimate goal is to ensure water quality and public health protection through environmentally sound solutions for PFAS remediation efforts.

5.
Mar Environ Res ; 194: 106343, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215624

RESUMO

The increasing prevalence of microplastic pollution in aquatic environments has raised concerns about its impact on marine life. Among the different types of microplastics, polystyrene microplastics (PSMPs) are one of the most commonly detected in aquatic systems. Chaetoceros neogracile (diatom) is an essential part of the marine food web and plays a critical role in nutrient cycling. This study aimed to monitor the ecotoxicological impact of PSMPs on diatoms and observe enzymatic interactions through molecular docking simulations. Results showed that diatom growth decreased with increasing concentrations and exposure time to PSMPs, and the lowest photosynthetic efficiency (Fv/Fm) value was observed after 72 and 96 h of exposure to 200 mg L-1 of PSMPs. High concentrations of PSMPs led to a decrease in chlorophyll a content (up to 64.4%) and protein content (up to 35.5%). Molecular docking simulations revealed potential interactions between PSMPs and the extrinsic protein in photosystem II protein of diatoms, suggesting a strong affinity between the two. These findings indicate a detrimental effect of PSMPs on the growth and photosynthetic efficiency of diatoms and highlight the need for further research on the impact of microplastics on marine microbial processes.


Assuntos
Diatomáceas , Poluentes Químicos da Água , Microplásticos/toxicidade , Poliestirenos/toxicidade , Plásticos/toxicidade , Clorofila A , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa