Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 309(3): e230959, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38112547

RESUMO

Background CT lymphangiography has been used to image the lymphatic anatomy and assess lymphatic abnormalities. There is, however, a need to develop a method for quantification of lymphatic flow rate in the thoracic duct (TD). Purpose To develop and validate a TD lymphatic flow measurement technique using dynamic contrast-enhanced CT lymphangiography. Materials and Methods Lymphatic flow rate was measured with two techniques: a first-pass analysis technique based on a single compartment model and a thresholding technique distinguishing between opacified and nonopacified voxels within the TD. The measurements were validated in a swine animal model between November 2021 and September 2022. CT images were acquired at 100 kV and 200 mA using a fast-pitched helical scan mode covering the entire TD following contrast material injection into the bilateral inguinal lymph nodes. Two helical CT scans, acquired at the base and peak contrast enhancement of the TD, were used to measure lymphatic flow rate. A US flow probe surgically placed around the TD provided the reference standard measurement. CT lymphatic flow measurements were compared with the reference US flow probe measurements using regression and Bland-Altman analysis. Repeatability was determined using repeated flow measurements within approximately 10 minutes of each other. Results Eleven swine (10 male; mean weight, 43.6 kg ± 2.6 [SD]) were evaluated with 71 dynamic CT acquisitions. The lymphatic flow rates measured using the first-pass analysis and thresholding techniques were highly correlated with the reference US flow probe measurements (r = 0.99 and 0.91, respectively) and showed good agreement with the reference standard, with Bland-Altman analysis showing small mean differences of 0.04 and 0.05 mL/min, respectively. The first-pass analysis and thresholding techniques also showed good agreement for repeated flow measurements (r = 0.94 and 0.90, respectively), with small mean differences of 0.09 and 0.03 mL/min, respectively. Conclusion The first-pass analysis and thresholding techniques could be used to accurately and noninvasively quantify TD lymphatic flow using dynamic contrast-enhanced CT lymphangiography. © RSNA, 2023 See also the editorial by Choyke in this issue.


Assuntos
Vasos Linfáticos , Ducto Torácico , Masculino , Animais , Suínos , Ducto Torácico/diagnóstico por imagem , Linfografia/métodos , Meios de Contraste , Vasos Linfáticos/diagnóstico por imagem , Tomografia Computadorizada por Raios X
2.
Eur Radiol ; 33(3): 1620-1628, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36219236

RESUMO

OBJECTIVES: The objective was to retrospectively develop a protocol in swine for optimal contrast media timing in coronary CT angiography (CCTA). METHODS: Several dynamic acquisitions were performed in 28 swine (55 ± 24 kg) with cardiac outputs between 1.5 and 5.5 L/min, for 80 total acquisitions. The contrast was injected (1mL/kg, 5mL/s, Isovue 370), followed by dynamic scanning of the entire aortic enhancement curve, from which the true peak time and aortic and coronary enhancements were recorded as the reference standard. Each dataset was then used to simulate two different CCTA protocols-a new optimal protocol and a standard clinical protocol. For the optimal protocol, the CCTA was acquired after bolus tracking-based trigging using a variable time delay of one-half the contrast injection time interval plus 1.5 s. For the standard protocol, the CCTA was acquired after bolus tracking-based triggering using a fixed time delay of 5 s. For both protocols, the CCTA time, aortic enhancement, coronary enhancement, and coronary contrast-to-noise ratio (CNR) were quantitatively compared to the reference standard measurements. RESULTS: For the optimal protocol, the angiogram was acquired within -0.15 ± 0.75 s of the true peak time, for a mean coronary CNR within 7% of the peak coronary CNR. Conversely, for the standard CCTA protocol, the angiogram was acquired within -1.82 ± 1.71 s of the true peak time, for a mean coronary CNR that was 23% lower than the peak coronary CNR. CONCLUSIONS: The optimal CCTA protocol improves contrast media timing and coronary CNR by acquiring the angiogram at the true aortic root peak time. KEY POINTS: • This study in swine retrospectively developed the mathematical basis of an improved approach for optimal contrast media timing in CCTA. • By combining dynamic bolus tracking with a simple contrast injection timing relation, CCTA can be acquired at the peak of the aortic root enhancement. • CCTA acquisition at the peak of the aortic root enhancement should maximize the coronary enhancement and CNR, potentially improving the accuracy of CT-based assessment of coronary artery disease.


Assuntos
Angiografia por Tomografia Computadorizada , Meios de Contraste , Animais , Suínos , Angiografia por Tomografia Computadorizada/métodos , Meios de Contraste/farmacologia , Estudos Retrospectivos , Angiografia Coronária/métodos , Tomografia Computadorizada por Raios X/métodos
3.
J Neuroradiol ; 49(2): 173-179, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34634295

RESUMO

RATIONALE AND OBJECTIVES: To validate the accuracy of a novel low-dose dynamic CT perfusion technique in a swine model using fluorescent microsphere measurement as the reference standard. MATERIALS AND METHODS: Contrast-enhanced dynamic CT perfusion was performed in five swine at baseline and following brain embolization. Reference microspheres and intravenous contrast (370 mg/ml iodine, 1 ml/kg) were injected (5 ml/s), followed by dynamic CT perfusion. Scan parameters were 320×0.5 mm, 100 kVp and 200 mA. On average, 47 contrast-enhanced volume scans were acquired per acquisition to capture the time attenuation curve. For each acquisition, only two systematically selected volume scans were used to quantify brain perfusion with first-pass analysis technique. The first volume scan was selected at the base, simulating bolus tracking, while the second volume at the peak of the time attenuation curve similar to a CT angiogram. Regional low-dose CT perfusion measurements were compared to the microsphere perfusion measurements with t-test, linear regression and Bland-Altman analysis. The radiation dose of the two-volume CT perfusion technique was determined. RESULTS: Low-dose CT perfusion measurements (PCT) showed excellent correlation with reference microsphere perfusion measurements (PMICRO) by PCT = 1.15 PMICRO - 0.01 (r = 0.93, p ≤ 0.01). The CT dose index and dose-length product for the two-volume CT perfusion technique were 25.6 mGy and 409.6 mGy, respectively. CONCLUSIONS: The accuracy and repeatability of a low-dose dynamic CT perfusion technique was validated in a swine model. This technique has the potential for accurate diagnosis and follow up of stroke and vasospasm.


Assuntos
Imagem de Perfusão do Miocárdio , Angiografia , Animais , Circulação Cerebrovascular , Meios de Contraste , Humanos , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Suínos , Tomografia Computadorizada por Raios X/métodos
4.
Eur Radiol ; 31(2): 938-946, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32845386

RESUMO

OBJECTIVES: Breast cancer is the most common cancer in women and the second leading cause of cancer death. It is well known that breast density is an important risk factor for breast cancer and also can be used to personalize screening and for assessment of treatment response. Breast density has previously been correlated to volumetric water density. The purpose of this study is to validate the accuracy and precision of dual-energy mammography in measuring water density in postmortem breasts. METHODS: Twenty pairs of postmortem breasts were imaged using dual-energy mammography with energy-sensitive photon-counting detectors. Chemical analysis was used as the reference standard to assess the accuracy of dual-energy mammography in measuring volumetric water and lipid density. Images from different views and contralateral breasts were used to assess estimate of precision for water and lipid volumetric density measurements. RESULTS: The measured volumetric water and lipid density from dual-energy mammography and chemical analysis were in good agreement, where the standard errors of estimates (SEE) of both were calculated to be 2.1%. Volumetric water and lipid density measurements from different views were also in good agreement, with a SEE of 1.3% and 1.1%, respectively. CONCLUSIONS: The results indicate that dual-energy mammography can be used to accurately measure volumetric water and lipid density in breast tissue. Accurate quantification of volumetric water density is expected to enhance its utility as a risk factor for breast cancer and for assessment of response to therapy. KEY POINTS: • Dual-energy mammography can be used to accurately measure water and lipid volumetric density in breast tissue. • Improved quantification of volumetric water density is expected to enhance its utility for assessment of response to therapy and as a risk factor for breast cancer.


Assuntos
Neoplasias da Mama , Água , Mama/diagnóstico por imagem , Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Lipídeos , Mamografia
5.
Eur Radiol ; 30(6): 3334-3345, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32072257

RESUMO

OBJECTIVES: This study compared the accuracy of an automated, vessel-specific minimum cost path (MCP) myocardial perfusion territory assignment technique as compared with the standard American Heart Association 17-segment (AHA) model. METHODS: Six swine (42 ± 9 kg) were used to evaluate the accuracy of the MCP technique and the AHA method. In each swine, a dynamic acquisition, comprised of twenty consecutive whole heart volume scans, was acquired with a computed tomography scanner, following peripheral injection of contrast material. From this acquisition, MCP and AHA perfusion territories were determined, for the left (LCA) and right (RCA) coronary arteries. Each animal underwent additional dynamic acquisitions, consisting of twenty consecutive volume scans, following direct intracoronary contrast injection into the LCA or RCA. These images were used as the reference standard (REF) LCA and RCA perfusion territories. The MCP and AHA techniques' perfusion territories were then quantitatively compared with the REF perfusion territories. RESULTS: The myocardial mass of MCP perfusion territories (MMCP) was related to the mass of reference standard perfusion territories (MREF) by MMCP = 0.99MREF + 0.39 g (r = 1.00; R2 = 1.00). The mass of AHA perfusion territories (MAHA) was related to MREF by MAHA = 0.81MREF + 5.03 g (r = 0.99; R2 = 0.98). CONCLUSION: The vessel-specific MCP myocardial perfusion territory assignment technique more accurately quantifies LCA and RCA perfusion territories as compared with the current standard AHA 17-segment model. Therefore, it can potentially provide a more comprehensive and patient-specific evaluation of coronary artery disease. KEY POINTS: • The minimum cost path (MCP) technique accurately determines left and right coronary artery perfusion territories, as compared with the American Heart Association 17-segment (AHA) model. • The minimum cost path (MCP) technique could be applied to cardiac computed-tomography angiography images to accurately determine patient-specific left and right coronary artery perfusion territories. • The American Heart Association 17-segment (AHA) model often fails to accurately determine left and right coronary artery perfusion territories, especially in the inferior and inferoseptal walls of the left ventricular myocardium.


Assuntos
Angiografia por Tomografia Computadorizada/métodos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico , Circulação Coronária/fisiologia , Vasos Coronários/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , American Heart Association , Animais , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Suínos , Estados Unidos
6.
Radiology ; 286(1): 93-102, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29059038

RESUMO

Purpose To retrospectively validate a first-pass analysis (FPA) technique that combines computed tomographic (CT) angiography and dynamic CT perfusion measurement into one low-dose examination. Materials and Methods The study was approved by the animal care committee. The FPA technique was retrospectively validated in six swine (mean weight, 37.3 kg ± 7.5 [standard deviation]) between April 2015 and October 2016. Four to five intermediate-severity stenoses were generated in the left anterior descending artery (LAD), and 20 contrast material-enhanced volume scans were acquired per stenosis. All volume scans were used for maximum slope model (MSM) perfusion measurement, but only two volume scans were used for FPA perfusion measurement. Perfusion measurements in the LAD, left circumflex artery (LCx), right coronary artery, and all three coronary arteries combined were compared with microsphere perfusion measurements by using regression, root-mean-square error, root-mean-square deviation, Lin concordance correlation, and diagnostic outcomes analysis. The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were also determined. Results FPA and MSM perfusion measurements (PFPA and PMSM) in all three coronary arteries combined were related to reference standard microsphere perfusion measurements (PMICRO), as follows: PFPA_COMBINED = 1.02 PMICRO_COMBINED + 0.11 (r = 0.96) and PMSM_COMBINED = 0.28 PMICRO_COMBINED + 0.23 (r = 0.89). The CT dose index and size-specific dose estimate per two-volume FPA perfusion measurement were 10.8 and 17.8 mGy, respectively. Conclusion The FPA technique was retrospectively validated in a swine model and has the potential to be used for accurate, low-dose vessel-specific morphologic and physiologic assessment of coronary artery disease. © RSNA, 2017.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imagem de Perfusão do Miocárdio/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Área Sob a Curva , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Frequência Cardíaca/fisiologia , Reprodutibilidade dos Testes , Suínos
7.
Radiology ; 272(3): 731-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24814180

RESUMO

PURPOSE: To investigate the feasibility of breast tissue characterization in terms of water, lipid, and protein contents with a spectral computed tomographic (CT) system based on a cadmium zinc telluride (CZT) photon-counting detector by using postmortem breasts. MATERIALS AND METHODS: Nineteen pairs of postmortem breasts were imaged with a CZT-based photon-counting spectral CT system with beam energy of 100 kVp. The mean glandular dose was estimated to be in the range of 1.8-2.2 mGy. The images were corrected for pulse pile-up and other artifacts by using spectral distortion corrections. Dual-energy decomposition was then applied to characterize each breast into water, lipid, and protein contents. The precision of the three-compartment characterization was evaluated by comparing the composition of right and left breasts, where the standard error of the estimations was determined. The results of dual-energy decomposition were compared by using averaged root mean square to chemical analysis, which was used as the reference standard. RESULTS: The standard errors of the estimations of the right-left correlations obtained from spectral CT were 7.4%, 6.7%, and 3.2% for water, lipid, and protein contents, respectively. Compared with the reference standard, the average root mean square error in breast tissue composition was 2.8%. CONCLUSION: Spectral CT can be used to accurately quantify the water, lipid, and protein contents in breast tissue in a laboratory study by using postmortem specimens.


Assuntos
Mama/química , Lipídeos/análise , Mamografia/instrumentação , Proteínas/análise , Análise Espectral/instrumentação , Água/análise , Autopsia , Cadáver , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Fótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação
8.
Artigo em Inglês | MEDLINE | ID: mdl-38904849

RESUMO

Coronary artery calcification is a significant predictor of cardiovascular disease, with current detection methods like Agatston scoring having limitations in sensitivity. This study aimed to evaluate the effectiveness of a novel CAC quantification method using dual-energy material decomposition, particularly its ability to detect low-density calcium and microcalcifications. A simulation study was conducted comparing the dual-energy material decomposition technique against the established Agatston scoring method and the newer volume fraction calcium mass technique. Detection accuracy and calcium mass measurement were the primary evaluation metrics. The dual-energy material decomposition technique demonstrated fewer false negatives than both Agatston scoring and volume fraction calcium mass, indicating higher sensitivity. In low-density phantom measurements, material decomposition resulted in only 7.41% false-negative (CAC = 0) measurements compared to 83.95% for Agatston scoring. For high-density phantoms, false negatives were removed (0.0%) compared to 20.99% in Agatston scoring. The dual-energy material decomposition technique presents a more sensitive and reliable method for CAC quantification.

9.
Eur Radiol Exp ; 8(1): 55, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705940

RESUMO

BACKGROUND: To evaluate the reproducibility of a vessel-specific minimum cost path (MCP) technique used for lobar segmentation on noncontrast computed tomography (CT). METHODS: Sixteen Yorkshire swine (49.9 ± 4.7 kg, mean ± standard deviation) underwent a total of 46 noncontrast helical CT scans from November 2020 to May 2022 using a 320-slice scanner. A semiautomatic algorithm was employed by three readers to segment the lung tissue and pulmonary arterial tree. The centerline of the arterial tree was extracted and partitioned into six subtrees for lobar assignment. The MCP technique was implemented to assign lobar territories by assigning lung tissue voxels to the nearest arterial tree segment. MCP-derived lobar mass and volume were then compared between two acquisitions, using linear regression, root mean square error (RMSE), and paired sample t-tests. An interobserver and intraobserver analysis of the lobar measurements was also performed. RESULTS: The average whole lung mass and volume was 663.7 ± 103.7 g and 1,444.22 ± 309.1 mL, respectively. The lobar mass measurements from the initial (MLobe1) and subsequent (MLobe2) acquisitions were correlated by MLobe1 = 0.99 MLobe2 + 1.76 (r = 0.99, p = 0.120, RMSE = 7.99 g). The lobar volume measurements from the initial (VLobe1) and subsequent (VLobe2) acquisitions were correlated by VLobe1 = 0.98VLobe2 + 2.66 (r = 0.99, p = 0.160, RSME = 15.26 mL). CONCLUSIONS: The lobar mass and volume measurements showed excellent reproducibility through a vessel-specific assignment technique. This technique may serve for automated lung lobar segmentation, facilitating clinical regional pulmonary analysis. RELEVANCE STATEMENT: Assessment of lobar mass or volume in the lung lobes using noncontrast CT may allow for efficient region-specific treatment strategies for diseases such as pulmonary embolism and chronic thromboembolic pulmonary hypertension. KEY POINTS: • Lobar segmentation is essential for precise disease assessment and treatment planning. • Current methods for segmentation using fissure lines are problematic. • The minimum-cost-path technique here is proposed and a swine model showed excellent reproducibility for lobar mass measurements. • Interobserver agreement was excellent, with intraclass correlation coefficients greater than 0.90.


Assuntos
Pulmão , Animais , Suínos , Pulmão/diagnóstico por imagem , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Modelos Animais , Algoritmos
10.
Res Sq ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38947043

RESUMO

Background: Coronary artery calcium (CAC) scans contain valuable information beyond the Agatston Score which is currently reported for predicting coronary heart disease (CHD) only. We examined whether new artificial intelligence (AI) algorithms applied to CAC scans may provide significant improvement in prediction of all cardiovascular disease (CVD) events in addition to CHD, including heart failure, atrial fibrillation, stroke, resuscitated cardiac arrest, and all CVD-related deaths. Methods: We applied AI-enabled automated cardiac chambers volumetry and automated calcified plaque characterization to CAC scans (AI-CAC) of 5830 individuals (52.2% women, age 61.7±10.2 years) without known CVD that were previously obtained for CAC scoring at the baseline examination of the Multi-Ethnic Study of Atherosclerosis (MESA). We used 15-year outcomes data and assessed discrimination using the time-dependent area under the curve (AUC) for AI-CAC versus the Agatston Score. Results: During 15 years of follow-up, 1773 CVD events accrued. The AUC at 1-, 5-, 10-, and 15-year follow up for AI-CAC vs Agatston Score was (0.784 vs 0.701), (0.771 vs. 0.709), (0.789 vs.0.712) and (0.816 vs. 0.729) (p<0.0001 for all), respectively. The category-free Net Reclassification Index of AI-CAC vs. Agatston Score at 1-, 5-, 10-, and 15-year follow up was 0.31, 0.24, 0.29 and 0.29 (p<.0001 for all), respectively. AI-CAC plaque characteristics including number, location, and density of plaque plus number of vessels significantly improved NRI for CAC 1-100 cohort vs. Agatston Score (0.342). Conclusion: In this multi-ethnic longitudinal population study, AI-CAC significantly and consistently improved the prediction of all CVD events over 15 years compared with the Agatston score.

11.
Nanotechnology ; 24(27): 275704, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23764755

RESUMO

Magnetic properties of undoped anatase, rutile, and amorphous titanium dioxide (TiO2) nanotubes grown by electrochemical anodization were studied by superconducting quantum interference device (SQUID) and electron spin resonance (ESR) methods in the temperature range 1.8-300 K. All anatase, rutile, and amorphous TiO2 nanotubes were found to exhibit paramagnetic behaviors in the entire temperature range when tested with magnetic center concentrations of 6×10(17), 3×10(16), and 3 × 10(15) cm(-3), respectively. The diameter of the TiO2 nanotubes varied from 40-160 nm and has no significant effect on the magnetic properties observed. SQUID data showed strong nonlinear M-H relationships for anatase at low temperatures, and Arrot plot analysis suggested ferromagnetism in the sample with a Curie temperature T(C) ~ 6 K. However, ESR studies showed no evidence for long-distance magnetic ordering. ESR studies revealed two magnetic centers with g1 = 1.928 and g2 = 2.028 that were common to all samples. The resonance peak at g1 = 1.922 was ascribed to Ti(3+) cations centers resulting from oxygen vacancies, while the peak at g2 = 2.028 was ascribed to surface absorbents. The amorphous sample ESR spectrum contained additional resonance peaks with corresponding g values at 2.228, 1.873, and 1.715 that possibly resulted from the disordered nature of these samples.

12.
J Xray Sci Technol ; 21(4): 567-77, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24191993

RESUMO

We studied in details the effect of various X-ray tube parameters (cathode size, anode size, anode - lens distance, etc.) on TiO_{2} nanotube field emission electron-beam focal spot size (FSS) and lens voltages for a single electrode lens system. The simulations were performed using commercially available SIMION 8.1 software. A wide range of parameters was simulated to determine conditions when FSS and lens focusing voltage had minimum values. In particular, the dependence of FSS and lens voltages on cathode size (d_{S}) was studied for different size lens apertures (d_{L}) and different anode voltages. The cathode size d_{S} was varied in the range from 0.1 mm to d_{L}; the d_{L} was changed from 4 to 24 mm in 4 mm increments. The simulations were performed for two different V_{A} values 60 kV and 120 kV. It was found that for 20 mm and 24 mm diameter lens apertures the maximum cathode size when the resulting FSS was not greater than 1600 µm (the focal spot size in clinical X-ray CT) were 17.5 mm and 16.2 mm, respectively. The lens voltages V_{f} corresponding to 17.5 mm and 16.2 mm cathode size in 20 mm and 24 mm aperture diameter x-ray tubes are 1850 V and -1550 V, respectively.


Assuntos
Nanotubos , Radiografia/instrumentação , Titânio/química , Simulação por Computador , Eletrodos , Eletricidade Estática
13.
J Med Imaging (Bellingham) ; 10(5): 056002, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37915404

RESUMO

Purpose: To validate a low-dose, single-volume quantitative CT myocardial flow technique in a cardiovascular flow phantom and a swine animal model of coronary artery disease. Approach: A cardiovascular flow phantom was imaged dynamically over different flow rates (0.97 to 2.45 mL/min/g) using 15 mL of contrast per injection. Six swine (37±8 kg) were also imaged dynamically, with different left anterior descending coronary artery balloon stenoses assessed under intracoronary adenosine stress, using 1 mL/kg of contrast per injection. The resulting images were used to simulate dynamic bolus tracking and peak volume scan acquisition. After which, first-pass single-compartment modeling was performed to derive quantitative flow, where the pre-contrast myocardial attenuation was assumed to be spatially uniform. The accuracy of CT flow was then assessed versus ultrasound and microsphere flow in the phantom and animal models, respectively, using regression analysis. Results: Single-volume quantitative CT flow measurements in the phantom (QCT_PHANTOM) were related to reference ultrasound flow measurements (QUS) by QCT_PHANTOM=1.04 QUS-0.1 (Pearson's r=0.98; RMSE=0.09 mL/min/g). In the animal model (QCT_ANIMAL), they were related to reference microsphere flow measurements (QMICRO) by QCT_ANIMAL=1.00 QMICRO-0.05 (Pearson's r=0.96; RMSE=0.48 mL/min/g). The effective dose per CT measurement was 1.21 mSv. Conclusions: The single-volume quantitative CT flow technique only requires bolus tracking data, spatially uniform pre-contrast myocardial attenuation, and a single volume scan acquired near the peak aortic enhancement for accurate, low-dose, myocardial flow measurement (in mL/min/g) under rest and adenosine stress conditions.

14.
J Med Imaging (Bellingham) ; 10(4): 043502, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37434664

RESUMO

Purpose: Agatston scoring does not detect all the calcium present in computed tomography scans of the heart. A technique that removes the need for thresholding and quantifies calcium mass more accurately and reproducibly is needed. Approach: Integrated intensity and volume fraction techniques were evaluated for accurate quantification of calcium mass. Integrated intensity calcium mass, volume fraction calcium mass, Agatston scoring, and spatially weighted calcium scoring were compared with known calcium mass in simulated and physical phantoms. The simulation was created to match a 320-slice CT scanner. Fat rings were added to the simulated phantoms, which resulted in small (30×20 cm2), medium (35×25 cm2), and large (40×30 cm2) phantoms. Three calcification inserts of different diameters and hydroxyapatite densities were placed within the phantoms. All the calcium mass measurements were repeated across different beam energies, patient sizes, insert sizes, and densities. Physical phantom images from a previously reported study were then used to evaluate the accuracy and reproducibility of the techniques. Results: Both integrated intensity calcium mass and volume fraction calcium mass yielded lower root mean squared error (RMSE) and deviation (RMSD) values than Agatston scoring in all the measurements in the simulated phantoms. Specifically, integrated calcium mass (RMSE: 0.49 mg, RMSD: 0.49 mg) and volume fraction calcium mass (RMSE: 0.58 mg, RMSD: 0.57 mg) were more accurate for the low-density stationary calcium measurements than Agatston scoring (RMSE: 3.70 mg, RMSD: 2.30 mg). Similarly, integrated calcium mass (15.74%) and volume fraction calcium mass (20.37%) had fewer false-negative (CAC = 0) measurements than Agatston scoring (75.00%) and spatially weighted calcium scoring (26.85%), on the low-density stationary calcium measurements. Conclusion: The integrated calcium mass and volume fraction calcium mass techniques can potentially improve risk stratification for patients undergoing calcium scoring and further improve risk assessment compared with Agatston scoring.

15.
Med Phys ; 50(8): 4930-4942, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36852776

RESUMO

BACKGROUND: Agatston scoring, the traditional method for measuring coronary artery calcium, is limited in its ability to accurately quantify low-density calcifications, among other things. The inaccuracy of Agatston scoring is likely due partly to the arbitrary thresholding requirement of Agatston scoring. PURPOSE: A calcium quantification technique that removes the need for arbitrary thresholding and is more accurate, sensitive, reproducible, and robust is needed. Improvements to calcium scoring will likely improve patient risk stratification and outcome. METHODS: The integrated Hounsfield technique was adapted for calcium scoring (integrated calcium mass). Integrated calcium mass requires no thresholding and includes all calcium information within an image. This study utilized phantom images acquired by G van Praagh et al., with calcium hydroxyapatite (HA) densities in the range of 200-800 mgHAcm-3 to measure calcium according to integrated calcium mass and Agatston scoring. The calcium mass was known, which allowed for accuracy, reproducibility, sensitivity, and robustness comparisons between integrated calcium mass and Agatston scoring. Multiple CT vendors (Canon, GE, Philips, Siemens) were used during the image acquisition phase, which provided a more robust comparison between the two calcium scoring techniques. Three calcification inserts of different diameters (1, 3, and 5 mm) and different HA densities (200, 400, and 800 mgHAcm-3 ) were placed within the phantom. The effect of motion was also analyzed using a dynamic phantom. All dynamic phantom calcium inserts were 5.0 ± 0.1 mm in diameter with a length of 10.0 ± 0.1 mm. The four different densities were 196 ± 3, 380 ± 2, 408 ± 2, and 800 ± 2 mgHAcm-3 . RESULTS: Integrated calcium mass was more accurate than Agatston scoring for stationary scans ( R M S E I n t e g r a t e d = 2.87 $RMS{E}_{Integrated} = 2.87$ , R M S E A g a t s o n = 4.07 $RMS{E}_{Agatson} = 4.07$ ) and motion affected scans ( R M S E I n t e g r a t e d = 9.70 $RMS{E}_{Integrated} = 9.70$ , R M S E A g a t s o n = 19.98 $RMS{E}_{Agatson} = 19.98$ ). On average, integrated calcium mass was more reproducible than Agatston scoring for two of the CT vendors. The percentage of false-negative and false-positive calcium scores were lower for integrated calcium mass (15.00%, 0.00%) than Agatston scoring (28.33%, 6.67%). Integrated calcium mass was more robust to changes in scan parameters than Agatston scoring. CONCLUSIONS: The results of this study indicate that integrated calcium mass is more accurate, reproducible, and sensitive than Agatston scoring on a variety of different CT vendors. The substantial reduction in false-negative scores for integrated calcium mass is likely to improve risk-stratification for patients undergoing calcium scoring and their potential outcome.


Assuntos
Calcinose , Cálcio , Humanos , Vasos Coronários/diagnóstico por imagem , Reprodutibilidade dos Testes , Calcinose/diagnóstico por imagem , Movimento (Física)
16.
Quant Imaging Med Surg ; 13(5): 3115-3126, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37179910

RESUMO

Background: Computed tomography pulmonary angiography (CTPA) is the primary modality for the detection and diagnosis of pulmonary embolism (PE) while the stratification of PE severity remains challenging using angiography. Hence, an automated minimum-cost path (MCP) technique was validated to quantify the subtended lung tissue distal to emboli using CTPA. Methods: A Swan-Ganz catheter was placed in the pulmonary artery of seven swine (body weight: 42.6±9.6 kg) to produce different PE severities. A total of 33 embolic conditions were generated, where the PE location was adjusted under fluoroscopic guidance. Each PE was induced by balloon inflation followed by computed tomography (CT) pulmonary angiography and dynamic CT perfusion scans using a 320-slice CT scanner. Following image acquisition, the CTPA and the MCP technique were used to automatically assign the ischemic perfusion territory distal to the balloon. Dynamic CT perfusion was used as the reference standard (REF) where the low perfusion territory was designated as the ischemic territory. The accuracy of the MCP technique was then evaluated by quantitatively comparing the MCP-derived distal territories to the perfusion-derived reference distal territories by mass correspondence using linear regression, Bland-Altman analysis, and paired sample t-test. The spatial correspondence was also assessed. Results: The MCP-derived distal territory masses (MassMCP, g) and the reference standard ischemic territory masses (MassREF, g) were related by MassMCP=1.02MassREF - 0.62 g (r=0.99, paired t-test P=0.51). The mean Dice similarity coefficient was 0.84±0.08. Conclusions: The MCP technique enables accurate assessment of lung tissue at risk distal to a PE using CTPA. This technique can potentially be used to quantify the fraction of lung tissue at risk distal to PE to further improve the risk stratification of PE.

17.
Comp Med ; 73(4): 323-328, 2023 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-37817365

RESUMO

Swine are commonly used for research on the respiratory system, but various anatomic features of the tracheobronchial tree of swine are poorly defined. The purpose of our study was to acquire normative measurements of the tracheobronchial tree of swine by using chest CT scans, thus laying a foundation for treating or studying airway disorders in this species. In our study, 33 male swine underwent thoracic CT scans; we measured anatomic features of the tracheobronchial tree, including the diameter, length, and angle of various airway structures. We further analyzed the relationships among selected principal parameters. Our data revealed several similarities and differences in anatomy between swine and humans. This information may be useful in future research.


Assuntos
Brônquios , Tomografia Computadorizada por Raios X , Humanos , Animais , Suínos , Brônquios/diagnóstico por imagem , Brônquios/anatomia & histologia , Tomografia Computadorizada por Raios X/veterinária
18.
Eur Heart J Open ; 3(2): oead017, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36992916

RESUMO

Aims: The goal of this study was to examine the association of breast arterial calcification (BAC) presence and quantity with incident atrial fibrillation (AF) in a large cohort of post-menopausal women. Methods and results: We conducted a longitudinal cohort study among women free of clinically overt cardiovascular disease and AF at baseline (between October 2012 and February 2015) when they attended mammography screening. Atrial fibrillation incidence was ascertained using diagnostic codes and natural language processing. Among 4908 women, 354 incident cases of AF (7%) were ascertained after a mean (standard deviation) of 7 (2) years of follow-up. In Cox regression adjusting for a propensity score for BAC, BAC presence vs. absence was not significantly associated with AF [hazard ratio (HR) = 1.12; 95% confidence interval (CI), 0.89-1.42; P = 0.34]. However, a significant (a priori hypothesized) age by BAC interaction was found (P = 0.02) such that BAC presence was not associated with incident AF in women aged 60-69 years (HR = 0.83; 95% CI, 0.63-1.15; P = 0.26) but was significantly associated with incident AF in women aged 70-79 years (HR = 1.75; 95% CI, 1.21-2.53; P = 0.003). No evidence of dose-response relationship between BAC gradation and AF was noted in the entire cohort or in age groups separately. Conclusion: Our results demonstrate, for the first time, an independent association between BAC and AF in women over age 70 years.

19.
Am J Physiol Heart Circ Physiol ; 303(3): H401-10, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22661513

RESUMO

Coronary flow reserve (CFR) and fractional flow reserve (FFR) are important physiological indexes for coronary disease. The purpose of this study was to validate the CFR and FFR measurement techniques using only angiographic image data. Fifteen swine were instrumented with an ultrasound flow probe on the left anterior descending artery (LAD). Microspheres were gradually injected into the LAD to create microvascular disruption. An occluder was used to produce stenosis. Contrast material injections were made into the left coronary artery during image acquisition. Volumetric blood flow from the flow probe (Q(q)) was continuously recorded. Angiography-based blood flow (Q(a)) was calculated by using a time-density curve based on the first-pass analysis technique. Flow probe-based CFR (CFR(q)) and angiography-based CFR (CFR(a)) were calculated as the ratio of hyperemic to baseline flow using Q(q) and Q(a), respectively. Relative angiographic FFR (relative FFR(a)) was calculated as the ratio of the normalized Q(a) in LAD to the left circumflex artery (LC(X)) during hyperemia. Flow probe-based FFR (FFR(q)) was measured from the ratio of hyperemic flow with and without disease. CFR(a) showed a strong correlation with the gold standard CFR(q) (CFR(a) = 0.91 CFR(q) + 0.30; r = 0.90; P < 0.0001). Relative FFR(a) correlated linearly with FFR(q) (relative FFR(a) = 0.86 FFR(q) + 0.05; r = 0.90; P < 0.0001). The quantification of CFR and relative FFR(a) using angiographic image data was validated in a swine model. This angiographic technique can potentially be used for coronary physiological assessment during routine cardiac catheterization.


Assuntos
Angiografia Coronária , Circulação Coronária , Estenose Coronária/diagnóstico por imagem , Reserva Fracionada de Fluxo Miocárdico , Imagem de Perfusão do Miocárdio/métodos , Animais , Velocidade do Fluxo Sanguíneo , Estenose Coronária/fisiopatologia , Modelos Animais de Doenças , Hiperemia/diagnóstico por imagem , Hiperemia/fisiopatologia , Masculino , Microcirculação , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Suínos
20.
Med Phys ; 39(4): 1864-76, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22482608

RESUMO

PURPOSE: To investigate the feasibility of using an image-based method to correct for distortions induced by various artifacts in the x-ray spectrum recorded with photon-counting detectors for their application in breast computed tomography (CT). METHODS: The polyenergetic incident spectrum was simulated with the tungsten anode spectral model using the interpolating polynomials (TASMIP) code and carefully calibrated to match the x-ray tube in this study. Experiments were performed on a Cadmium-Zinc-Telluride (CZT) photon-counting detector with five energy thresholds. Energy bins were adjusted to evenly distribute the recorded counts above the noise floor. BR12 phantoms of various thicknesses were used for calibration. A nonlinear function was selected to fit the count correlation between the simulated and the measured spectra in the calibration process. To evaluate the proposed spectral distortion correction method, an empirical fitting derived from the calibration process was applied on the raw images recorded for polymethyl methacrylate (PMMA) phantoms of 8.7, 48.8, and 100.0 mm. Both the corrected counts and the effective attenuation coefficient were compared to the simulated values for each of the five energy bins. The feasibility of applying the proposed method to quantitative material decomposition was tested using a dual-energy imaging technique with a three-material phantom that consisted of water, lipid, and protein. The performance of the spectral distortion correction method was quantified using the relative root-mean-square (RMS) error with respect to the expected values from simulations or areal analysis of the decomposition phantom. RESULTS: The implementation of the proposed method reduced the relative RMS error of the output counts in the five energy bins with respect to the simulated incident counts from 23.0%, 33.0%, and 54.0% to 1.2%, 1.8%, and 7.7% for 8.7, 48.8, and 100.0 mm PMMA phantoms, respectively. The accuracy of the effective attenuation coefficient of PMMA estimate was also improved with the proposed spectral distortion correction. Finally, the relative RMS error of water, lipid, and protein decompositions in dual-energy imaging was significantly reduced from 53.4% to 6.8% after correction was applied. CONCLUSIONS: The study demonstrated that dramatic distortions in the recorded raw image yielded from a photon-counting detector could be expected, which presents great challenges for applying the quantitative material decomposition method in spectral CT. The proposed semi-empirical correction method can effectively reduce these errors caused by various artifacts, including pulse pileup and charge sharing effects. Furthermore, rather than detector-specific simulation packages, the method requires a relatively simple calibration process and knowledge about the incident spectrum. Therefore, it may be used as a generalized procedure for the spectral distortion correction of different photon-counting detectors in clinical breast CT systems.


Assuntos
Algoritmos , Artefatos , Fotometria/instrumentação , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa