Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 40(8): e107238, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33749896

RESUMO

Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.


Assuntos
Proliferação de Células , Glicoesfingolipídeos/biossíntese , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Células Cultivadas , Células HeLa , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Transdução de Sinais
2.
Cell Death Differ ; 29(12): 2429-2444, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35739253

RESUMO

Aging is accompanied by the progressive decline in tissue regenerative capacity and functions of resident stem cells (SCs). Underlying mechanisms, however, remain unclear. Here we show that, during chronological aging, self-renewing mitoses of mammary SCs (MaSCs) are preferentially asymmetric and that their progeny divides less frequently, leading to decreased number of MaSCs and reduced regenerative potential. Underlying mechanisms are investigated in the p66Shc-/- mouse, which exhibits several features of delayed aging, including reduced involution of the mammary gland (MG). p66Shc is a mitochondrial redox sensor that activates a specific p53 transcriptional program, in which the aging-associated p44 isoform of p53 plays a pivotal role. We report here that aged p66Shc-/- MaSCs show increased symmetric divisions, increased proliferation and increased regenerative potential, to an extent reminiscent of young wild-type (WT) MaSCs. Mechanistically, we demonstrate that p66Shc, together with p53: (i) accumulates in the aged MG, (ii) sustains expression of the cell polarity determinant mInscuteable and, concomitantly, (iii) down-regulates critical cell cycle genes (e.g.,: Cdk1 and Cyclin A). Accordingly, overexpression of p53/p44 increases asymmetric divisions and decreases proliferation of young WT MaSCs in a p66Shc-dependent manner and overexpression of mInsc restores WT-like levels of asymmetric divisions in aged p66Shc-/- MaSCs. Notably, deletion of p66Shc has negligible effects in young MaSCs and MG development. These results demonstrate that MG aging is due to aberrant activation of p66Shc, which induces p53/p44 signaling, leading to failure of symmetric divisions, decreased proliferation and reduced regenerative potential of MaSCs.


Assuntos
Glândulas Mamárias Animais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Células-Tronco , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proliferação de Células , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Glândulas Mamárias Animais/citologia
3.
Biochem Pharmacol ; 94(3): 212-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25667043

RESUMO

Depending on their genetic background (p53(wt) versus p53(null)), carcinoma cells are more or less sensitive to drug-induced cell cycle arrest and/or apoptosis. Among the members of the p53 family, p63 is characterized by two N-terminal isoforms, TAp63 and ΔNp63. TAp63 isoform has p53-like functions, while ΔNp63 acts as a dominant negative inhibitor of p53. We have previously published that TAp63 is involved in poly(ADP-ribose)polymerase-1 (PARP-1) signaling of DNA damage deriving from DNA topoisomerase I (TOP I) inhibition in carcinoma cells. In the present study, we treated MCF7 breast carcinoma cells (p53(+)/ΔNp63(-)) or SCC022 (p53(-)/ΔNp63(+)) squamous carcinoma cells with the TOP I inhibitor topotecan (TPT) and the PJ34 PARP inhibitor, to compare their effects in the two different cell contexts. In MCF7 cells, we found that PJ34 addition reverts TPT-dependent PARP-1 auto-modification and triggers caspase-dependent PARP-1 proteolysis. Moreover, TPT as single agent stimulates p53(ser15) phosphorylation, p53 PARylation and occupancy of the p21WAF promoter by p53 resulting in an increase of p21WAF expression. Interestingly, PJ34 in combination with TPT enhances p53 occupancy at the BAX promoter and is associated with increased BAX protein level. In SCC022 cells, instead, TPT+PJ34 combined treatment reduces the level of the anti-apoptotic ΔNp63α protein without inducing apoptosis. Remarkably, in such cells, either exogenous p53 or TAp63 can rescue the apoptotic program in response to the treatment. All together our results suggest that in cancer cells PARP inhibitor(s) can operate in the choice between growth arrest and apoptosis by modulating p53 family-dependent signal.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Proteínas de Membrana/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores da Topoisomerase I/farmacologia , Proteína Supressora de Tumor p53/fisiologia , Sequência de Bases , Sobrevivência Celular/fisiologia , Primers do DNA , Humanos , Células MCF-7 , Processamento de Proteína Pós-Traducional , Reação em Cadeia da Polimerase em Tempo Real
4.
Biochem Pharmacol ; 85(7): 999-1006, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376119

RESUMO

Poly(ADP-ribose)polymerase 1 (PARP-1) inhibitors are thought as breakthrough for cancer treatment in solid tumors such as breast cancer through their effects on PARP's enzymatic activity. Our previous findings showed that the hydrophilic PARP inhibitor PJ34 enhances the sensitivity of p53 proficient MCF7 breast carcinoma cells to topotecan, a DNA Topoisomerase I (TOP 1) inhibitor. In the present study, we combine the classical TOP 1 poison camptothecin or its water-soluble derivative topotecan with PJ34 to investigate the potentiation of chemotherapeutic efficiency in MCF7 (p53(WT)), MDA-MB231 (p53(mut)) breast carcinoma cells and SCC022 (p53(null)) squamous carcinoma cells. We show that, following TPT-PJ34 combined treatment, MCF7 cells exhibit apoptotic death while MDA-MB231 and SCC022 cells are more resistant to these agents. Specifically, in MCF7, (i) PJ34 in combination with TPT causes a G2/M cell cycle arrest followed by massive apoptosis; (ii) PJ34 addition reverts TPT-dependent PARP-1 automodification and triggers caspase-dependent PARP-1 proteolysis; (iii) TPT, used as a single agent, stimulates p53 expression while in combination with PJ34 increases p53, TAp63α and TAp63γ protein levels with a concomitant reduction of MDM2 protein. The identification of p63 proteins as new players involved in the cancer cell response to TPT-PJ34 is relevant for a better understanding of the PARP1-dependent signaling of DNA damage. Furthermore, our data indicate that, in response to TPT-PJ34 combined chemotherapy, a functional cooperation between p53 and TAp63 proteins may occur and be essential to trigger apoptotic cell death.


Assuntos
Dano ao DNA , DNA Topoisomerases Tipo I/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Apoptose , Camptotecina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reparo do DNA , Interações Medicamentosas , Humanos , Fenantrenos/farmacologia , Poli Adenosina Difosfato Ribose/biossíntese , Inibidores de Poli(ADP-Ribose) Polimerases , Prostaglandinas Sintéticas/farmacologia , Transdução de Sinais , Topotecan/farmacologia , Proteína Supressora de Tumor p53/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa