Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Policy ; 140: 105054, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35399704

RESUMO

The human response to the COVID-19 pandemic set in motion an unprecedented shift in human activity with unknown long-term effects. The impacts in marine systems are expected to be highly dynamic at local and global scales. However, in comparison to terrestrial ecosystems, we are not well-prepared to document these changes in marine and coastal environments. The problems are two-fold: 1) manual and siloed data collection and processing, and 2) reliance on marine professionals for observation and analysis. These problems are relevant beyond the pandemic and are a barrier to understanding rapidly evolving blue economies, the impacts of climate change, and the many other changes our modern-day oceans are undergoing. The "Our Ocean in COVID-19″ project, which aims to track human-ocean interactions throughout the pandemic, uses the new eOceans platform (eOceans.app) to overcome these barriers. Working at local scales, a global network of ocean scientists and citizen scientists are collaborating to monitor the ocean in near real-time. The purpose of this paper is to bring this project to the attention of the marine conservation community, researchers, and the public wanting to track changes in their area. As our team continues to grow, this project will provide important baselines and temporal patterns for ocean conservation, policy, and innovation as society transitions towards a new normal. It may also provide a proof-of-concept for real-time, collaborative ocean monitoring that breaks down silos between academia, government, and at-sea stakeholders to create a stronger and more democratic blue economy with communities more resilient to ocean and global change.

2.
Genet Mol Res ; 13(1): 1244-50, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24634181

RESUMO

Here, we report the successful cross-species amplification of previously published acroporid microsatellite markers in the coral Acropora austera from the south-western Indian Ocean. This fast-growing species is a major reef-building coral on South African reefs; however, it is the most damaged coral by scuba diving activity, and is known to be very susceptible to coral bleaching. Neither genetic information nor symbiont-free host tissue was available to develop novel microsatellite markers for this species. Cross-species amplification of previously published microsatellite markers was considered as an alternative to overcome these problems. Of the 21 microsatellite markers tested, 6 were reliably amplified, scored, and found to contain polymorphic loci (3-15 alleles). Although microsatellite sequences are believed to be scarce in the Acropora genome because of its small size, the results of this study and previous research indicate that the microsatellite sequences are well conserved across Acropora species. A detailed screening process identified and quantified the sources of error and bias in the application of these markers (e.g., allele scoring error, failure rates, frequency of null alleles), and may be accounted for in the study of the contemporary gene flow of A. austera in the south-western Indian Ocean.


Assuntos
Antozoários/classificação , Antozoários/genética , Repetições de Microssatélites , Animais , Recifes de Corais , DNA/análise , Fluxo Gênico , Loci Gênicos , Oceano Índico , Desequilíbrio de Ligação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa