Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468672

RESUMO

The pathogenesis of chemotherapy-induced peripheral neuropathy (CIPN) is poorly understood. Here, we report that the CIPN-causing drug bortezomib (Bort) promotes delta 2 tubulin (D2) accumulation while affecting microtubule stability and dynamics in sensory neurons in vitro and in vivo and that the accumulation of D2 is predominant in unmyelinated fibers and a hallmark of bortezomib-induced peripheral neuropathy (BIPN) in humans. Furthermore, while D2 overexpression was sufficient to cause axonopathy and inhibit mitochondria motility, reduction of D2 levels alleviated both axonal degeneration and the loss of mitochondria motility induced by Bort. Together, our data demonstrate that Bort, a compound structurally unrelated to tubulin poisons, affects the tubulin cytoskeleton in sensory neurons in vitro, in vivo, and in human tissue, indicating that the pathogenic mechanisms of seemingly unrelated CIPN drugs may converge on tubulin damage. The results reveal a previously unrecognized pathogenic role for D2 in BIPN that may occur through altered regulation of mitochondria motility.


Assuntos
Bortezomib/efeitos adversos , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/genética , Tubulina (Proteína)/genética , Animais , Antineoplásicos/efeitos adversos , Axônios/efeitos dos fármacos , Axônios/patologia , Modelos Animais de Doenças , Drosophila melanogaster/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Larva/efeitos dos fármacos , Larva/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Neoplasias/genética , Neoplasias/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Peixe-Zebra/genética
2.
Eur J Neurosci ; 57(12): 2149-2159, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36300727

RESUMO

Neurological outcome after ischemic stroke depends on residual salvageable brain tissue at the time of recanalization. Head down tilt 15° (HDT15) was proven effective in reducing infarct size and improving functional outcome in rats with transient middle cerebral artery occlusion (t-MCAO) by increasing cerebral perfusion within the ischemic penumbra. In this pooled analysis, individual animal-level data from three experimental series were combined in a study population of 104 t-MCAO rats (45 in HDT15 group and 59 in flat position group). Co-primary outcomes were infarct size and functional outcome at 24 h in both groups. The secondary outcome was hemodynamic change induced by HDT15 in ischemic and non-ischemic hemispheres in a subgroup of animals. Infarct size at 24 h was smaller in HDT15 group than in flat position group (absolute mean difference 31.69 mm3 , 95% CI 9.1-54.2, Cohen's d 0.56, p = 0.006). Functional outcome at 24 h was better in HDT15 group than in flat position group (median [IQR]: 13[10-16] vs. 11), with a shift in the distribution of the neurobehavioural scores in favour of HDT15. Mean cerebral perfusion in the ischemic hemisphere was higher during HDT15 than before its application (Perfusion Unit [P.U.], mean ± SD: 52.5 ± 19.52 P.U. vs. 41.25 ± 14.54 P.U., mean of differences 13.36, 95% CI 7.5-19.18, p = 0.0002). Mean cerebral perfusion in the non-ischemic hemisphere before and during HDT15 was unchanged (P.U., mean ± SD: 94.1 ± 33.8 P.U. vs. 100.25 ± 25.34 P.U., mean of differences 3.95, 95%, CI -1.9 to 9.6, p = 0.1576). This study confirmed that HDT15 improves the outcome in t-MCAO rats by promoting cerebral perfusion in the ischemic territory, without disrupting hemodynamics in non-ischemic areas.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Decúbito Inclinado com Rebaixamento da Cabeça , Encéfalo , Infarto da Artéria Cerebral Média , Hemodinâmica
3.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675203

RESUMO

Peripheral Neuropathies (PN) are common conditions whose treatment is still lacking in most cases. Animal models are crucial, but experimental procedures should be refined in some cases. We performed a detailed characterization of the ventral caudal nerve to contribute to a more effective assessment of axonal damage in future PN studies. PN was induced via weekly systemic injection of a neurotoxic drug (paclitaxel); we compared the control and PN-affected rats, performing serial neurophysiological evaluations of the caudal nerve for its entire length. On the same nerve portions, we performed light microscopy and ultrastructural pathological observations to assess the severity of damage and verify the integrity of the surrounding structures. Neurophysiological and morphological analyses confirmed that a severe axonopathy had ensued in the PN group, with a length-dependent modality, matching morphological observations. The site of neurophysiological recording (e.g., distance from the base of the tail) was critical for achieving useful data. A flexible experimental paradigm should be considered in animal studies investigating axonal PN, particularly if the expected severity is relevant; the mid-portion of the tail might be the most appropriate site: there damage might be remarkable but neither as extreme as at the tip of the tail nor as mild as at the base of the tail.


Assuntos
Tecido Nervoso , Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico , Ratos , Animais , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Tecido Nervoso/patologia , Paclitaxel/efeitos adversos , Axônios/patologia , Síndromes Neurotóxicas/patologia
4.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077454

RESUMO

Oxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN) is a frequent adverse event of colorectal cancer treatment. OIPN encompasses a chronic and an acute syndrome. The latter consists of transient axonal hyperexcitability, due to unbalance in Na+ voltage-operated channels (Na+VOC). This leads to sustained depolarisation which can activate the reverse mode of the Na+/Ca2+ exchanger 2 (NCX2), resulting in toxic Ca2+ accumulation and axonal damage (ADa). We explored the role of NCX2 in in vitro and in vivo settings. Embryonic rat Dorsal Root Ganglia (DRG) organotypic cultures treated with SEA0400 (SEA), a NCX inhibitor, were used to assess neuroprotection in a proof-of-concept and pilot study to exploit NCX modulation to prevent ADa. In vivo, OHP treated mice (7 mg/Kg, i.v., once a week for 8 weeks) were compared with a vehicle-treated group (n = 12 each). Neurophysiological and behavioural testing were performed to characterise acute and chronic OIPN, and morphological analyses were performed to detect ADa. Immunohistochemistry, immunofluorescence, and western blotting (WB) analyses were also performed to demonstrate changes in NCX2 immunoreactivity and protein expression. In vitro, NCX inhibition was matched by ADa mitigation. In the in vivo part, after verifyingboth acute and chronic OIPN had ensued, we confirmed via immunohistochemistry, immunofluorescence, and WB that a significant NCX2 alteration had ensued in the OHP group. Our data suggest NCX2 involvement in ADa development, paving the way to a new line of research to prevent OIPN.


Assuntos
Síndromes Neurotóxicas , Trocador de Sódio e Cálcio , Animais , Axônios/metabolismo , Camundongos , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Oxaliplatina/efeitos adversos , Projetos Piloto , Ratos , Trocador de Sódio e Cálcio/metabolismo
5.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494384

RESUMO

The onset of chemotherapy-induced peripheral neurotoxicity (CIPN) is a leading cause of the dose reduction or discontinuation of cancer treatment due to sensory symptoms. Paclitaxel (PTX) can cause painful peripheral neuropathy, with a negative impact on cancer survivors' quality of life. While recent studies have shown that neuroinflammation is involved in PTX-induced peripheral neurotoxicity (PIPN), the pathophysiology of this disabling side effect remains largely unclear and no effective therapies are available. Therefore, here we investigated the effects of human intravenous immunoglobulin (IVIg) on a PIPN rat model. PTX-treated rats showed mechanical allodynia and neurophysiological alterations consistent with a severe sensory axonal polyneuropathy. In addition, morphological evaluation showed a reduction of intra-epidermal nerve fiber (IENF) density and evidenced axonopathy with macrophage infiltration, which was more prominent in the distal segment of caudal nerves. Three weeks after the last PTX injection, mechanical allodynia was still present in PTX-treated rats, while the full recovery in the group of animals co-treated with IVIg was observed. At the pathological level, this behavioral result was paralleled by prevention of the reduction in IENF density induced by PTX in IVIg co-treated rats. These results suggest that the immunomodulating effect of IVIg co-treatment can alleviate PIPN neurotoxic manifestations, probably through a partial reduction of neuroinflammation.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Imunoglobulinas Intravenosas/administração & dosagem , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/etiologia , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Hiperalgesia/diagnóstico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Síndromes Neurotóxicas/diagnóstico , Paclitaxel/uso terapêutico , Doenças do Sistema Nervoso Periférico/diagnóstico , Ratos , Resultado do Tratamento
6.
Arch Toxicol ; 94(7): 2517-2522, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32333051

RESUMO

Chemotherapy-Induced Peripheral Neurotoxicity (CIPN) is a severe and long-lasting side effect of anticancer therapy, which can severely impair patients' quality of life. It is a sensory and length-dependent neuropathy, which predominantly affects large myelinated fibers. Easy and reliable monitoring of CIPN in patients is still an unmet clinical need. Since increasing clinical evidence supports the potential use of neurofilament light chain (NfL) as a biomarker of axonal injury, in this study we measured serum NfL levels in animals chronically treated with cisplatin (CDDP) and paclitaxel (PTX), two antineoplastic drugs with different neuronal targets. Wistar rats were treated with CDDP (2 mg/kg i.p. twice/week for 4 weeks) or PTX (10 mg/kg i.v. once/week for 4 weeks). Repeated serum NfL quantification was obtained using the Single Molecule Array (Simoa) technology. The onset and progression of peripheral neurotoxicity were evaluated through neurophysiology, morphological assessments and intraepidermal nerve fibers density quantification. Our results showed that serum NfL measurements correlated with the severity of axonal damage. In fact, both treatments induced serum NfL increase, but higher levels were evidenced in PTX-treated animals, compared with CDDP-treated rats, affected by a milder neurotoxicity. Notably, also the timing of the NfL level increase was associated with the severity of morphological and functional alterations of axonal structure. Therefore, NfL could be a useful biomarker for axonal damage in order to follow the onset and severity of axonal degeneration and possibly limit the occurrence of serious PNS disease.


Assuntos
Antineoplásicos , Axônios/metabolismo , Cisplatino , Proteínas de Neurofilamentos/sangue , Síndromes Neurotóxicas/sangue , Paclitaxel , Nervos Periféricos/metabolismo , Doenças do Sistema Nervoso Periférico/sangue , Animais , Axônios/patologia , Biomarcadores/sangue , Modelos Animais de Doenças , Feminino , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Nervos Periféricos/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Ratos Wistar , Índice de Gravidade de Doença , Regulação para Cima
7.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998392

RESUMO

Oxaliplatin-induced peripheral neuropathy is characterized by an acute hyperexcitability syndrome triggered/exacerbated by cold. The mechanisms underlying oxaliplatin-induced peripheral neuropathy are unclear, but the alteration of ion channel expression and activity plays a well-recognized central role. Recently, we found that oxaliplatin leads to cytosolic acidification in dorsal root ganglion (DRG) neurons. Here, we investigated the early impact of oxaliplatin on the proton-sensitive TREK potassium channels. Following a 6-h oxaliplatin treatment, both channels underwent a transcription upregulation that returned to control levels after 42 h. The overexpression of TREK channels was also observed after in vivo treatment in DRG cells from mice exposed to acute treatment with oxaliplatin. Moreover, both intracellular pH and TREK channel transcription were similarly regulated after incubation with amiloride, an inhibitor of the Na+/H+ exchanger. In addition, we studied the role of oxaliplatin-induced acidification on channel behavior, and, as expected, we observed a robust positive modulation of TREK channel activity. Finally, we focused on the impact of this complex modulation on capsaicin-evoked neuronal activity finding a transient decrease in the average firing rate following 6 h of oxaliplatin treatment. In conclusion, the early activation of TREK genes may represent a mechanism of protection against the oxaliplatin-related perturbation of neuronal excitability.


Assuntos
Antineoplásicos/efeitos adversos , Gânglios Espinais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Oxaliplatina/efeitos adversos , Doenças do Sistema Nervoso Periférico/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Trocador 1 de Sódio-Hidrogênio/genética , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Amilorida/farmacologia , Animais , Capsaicina/farmacologia , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Neurônios/metabolismo , Neurônios/patologia , Técnicas de Patch-Clamp , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Canais de Potássio de Domínios Poros em Tandem/agonistas , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Cultura Primária de Células , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Trocador 1 de Sódio-Hidrogênio/metabolismo , Ativação Transcricional
8.
J Neuroinflammation ; 15(1): 232, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30131066

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe adverse effect in patients receiving antitumor agents, and no effective treatment is available. Although the mechanisms responsible for the development of CIPN are poorly understood, recent findings make neuroinflammation an attractive target to be investigated, particularly when neuropathic pain is a prominent feature such as after bortezomib administration. The aim of our study was to evaluate the effect of intravenous immunoglobulins (IVIg) delivery in chronic CIPN. The related neuro-immune aspects were investigated in a well-characterized rat model of bortezomib-induced peripheral neurotoxicity (BIPN). METHODS: After determination of a suitable schedule based on a preliminary pharmacokinetic pilot study, female Wistar rats were treated with IVIg 1 g/kg every 2 weeks. IVIg treatment was started at the beginning of bortezomib administration ("preventive" schedule), or once BIPN was already ensued after 4 weeks of treatment ("therapeutic" schedule). Neurophysiological and behavioral studies were performed to assess the extent of painful peripheral neurotoxicity induced by bortezomib, and these functional assessments were completed by pathologic examination of peripheral nerves and intraepidermal nerve fiber quantification (IENF). The role of the innate immune response in BIPN was investigated by immunochemistry characterization of macrophage infiltration in peripheral nerves. RESULTS: Both schedules of IVIg administration were able to significantly reduce bortezomib-induced heat and mechanical allodynia. Although these changes were not evidenced at the neurophysiological examination of peripheral nerves, they behavioral effects were paralleled in the animals treated with the preventive schedule by reduced axonopathy in peripheral nerves and significant protection from loss of IENF. Moreover, IVIg administration was very effective in reducing infiltration in peripheral nerves of macrophages with the M1, pro-inflammatory phenotype. CONCLUSION: Our results suggest a prominent role of neuroinflammation in BIPN and that IVIg might be considered as a possible safe and effective therapeutic option preventing M1 macrophage infiltration. However, since neuropathic pain is frequent also in other CIPN types, it also indicates the need for further investigation in other forms of CIPN.


Assuntos
Imunoglobulinas/uso terapêutico , Fatores Imunológicos/uso terapêutico , Macrófagos/efeitos dos fármacos , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/patologia , Nervos Periféricos/patologia , Animais , Antineoplásicos/toxicidade , Peso Corporal/efeitos dos fármacos , Bortezomib/toxicidade , Citocinas/metabolismo , Modelos Animais de Doenças , Temperatura Alta/efeitos adversos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Macrófagos/patologia , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/patologia , Condução Nervosa/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Infiltração de Neutrófilos , Estimulação Física/efeitos adversos , Ratos , Limiar Sensorial/efeitos dos fármacos , Pele/patologia
9.
Neurobiol Dis ; 74: 305-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25484287

RESUMO

Intracranial collaterals are dynamically recruited after arterial occlusion and are emerging as a strong determinant of tissue outcome in both human and experimental ischemic stroke. The relationship between collateral flow and ischemic penumbra remains largely unexplored in pre-clinical studies. The aim of the present study was to investigate the pattern of collateral flow with regard to penumbral tissue after transient middle cerebral artery (MCA) occlusion in rats. MCA was transiently occluded (90min) by intraluminal filament in adult male Wistar rats (n=25). Intracranial collateral flow was studied in terms of perfusion deficit and biosignal fluctuation analyses using multi-site laser Doppler monitoring. Molecular penumbra was defined by topographical mapping and quantitative signal analysis of Heat Shock Protein 70kDa (HSP70) immunohistochemistry. Functional deficit and infarct volume were assessed 24h after ischemia induction. The results show that functional performance of intracranial collaterals during MCA occlusion inversely correlated with HSP70 immunoreactive areas in both the cortex and the striatum, as well as with infarct size and functional deficit. Intracranial collateral flow was associated with reduced areas of both molecular penumbra and ischemic core and increased areas of intact tissue in rats subjected to MCA occlusion followed by reperfusion. Our findings prompt the development of collateral therapeutics to provide tissue-saving strategies in the hyper-acute phase of ischemic stroke prior to recanalization therapy.


Assuntos
Isquemia Encefálica/fisiopatologia , Córtex Cerebral/fisiopatologia , Circulação Cerebrovascular/fisiologia , Corpo Estriado/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Antígenos Nucleares/metabolismo , Isquemia Encefálica/patologia , Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas , Córtex Cerebral/patologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Fluxometria por Laser-Doppler , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ratos Wistar , Índice de Gravidade de Doença , Acidente Vascular Cerebral/patologia
10.
Toxics ; 11(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36850969

RESUMO

Chemotherapy-induced peripheral neurotoxicity is one of the most common dose-limiting toxicities of several widely used anticancer drugs such as platinum derivatives (cisplatin) and taxanes (paclitaxel). Several molecular mechanisms related to the onset of neurotoxicity have already been proposed, most of them having the sensory neurons of the dorsal root ganglia (DRG) and the peripheral nerve fibers as principal targets. In this study we explore chemotherapy-induced peripheral neurotoxicity beyond the neuronocentric view, investigating the changes induced by paclitaxel (PTX) and cisplatin (CDDP) on satellite glial cells (SGC) in the DRG and their crosstalk. Rats were chronically treated with PTX (10 mg/Kg, 1qwx4) or CDDP (2 mg/Kg 2qwx4) or respective vehicles. Morpho-functional analyses were performed to verify the features of drug-induced peripheral neurotoxicity. Qualitative and quantitative immunohistochemistry, 3D immunofluorescence, immunoblotting, and transmission electron microscopy analyses were also performed to detect alterations in SGCs and their interconnections. We demonstrated that PTX, but not CDDP, produces a strong activation of SGCs in the DRG, by altering their interconnections and their physical contact with sensory neurons. SGCs may act as principal actors in PTX-induced peripheral neurotoxicity, paving the way for the identification of new druggable targets for the treatment and prevention of chemotherapy-induced peripheral neurotoxicity.

11.
Neuroscience ; 523: 1-6, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37211082

RESUMO

Cerebral collaterals are recruited after arterial occlusion with a protective effect on tissue outcome in acute ischemic stroke. Head down tilt 15° (HDT15) is a simple, low cost and accessible procedure that could be applied as an emergency treatment, before recanalization therapies, with the aim to increase cerebral collateral flow. Spontaneously hypertensive rats have been shown to display anatomical differences in morphology and function of cerebral collaterals, compared to other rat strains, resulting in an overall poor collateral circulation. We investigate the efficacy and safety of HDT15 in spontaneously hypertensive (SHR) rats, which were considered as an animal stroke model with poor collaterals. Cerebral ischemia was induced by 90 minute endovascular occlusion of the middle cerebral artery (MCA). SHR rats were randomized to HDT15 or flat position (n = 19). HDT15 was applied 30 minutes after occlusion and lasted 60 minutes, until reperfusion. HDT15 application increased cerebral perfusion (+16.6% versus +6.1%; p = 0.0040) and resulted in a small reduction of infarct size (83.6 versus 107.1 mm3; - 21.89%; p = 0.0272), but it was not associated with early neurological improvement, compared to flat position. Our study suggests that the response to HDT15 during MCA occlusion is dependent on baseline collaterals. Nonetheless, HDT15 promoted a mild improvement of cerebral hemodynamics even in subjects with poor collaterals, without safety concerns.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Ratos , Circulação Cerebrovascular/fisiologia , Decúbito Inclinado com Rebaixamento da Cabeça , Ratos Endogâmicos SHR
12.
Front Pain Res (Lausanne) ; 3: 1066069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582196

RESUMO

Neuropathic pain is a frequent complication of chemotherapy-induced peripheral neurotoxicity (CIPN). Chemotherapy-induced peripheral neuropathies may serve as a model to study mechanisms of neuropathic pain, since several other common causes of peripheral neuropathy like painful diabetic neuropathy may be due to both neuropathic and non-neuropathic pain mechanisms like ischemia and inflammation. Experimental studies are ideally suited to study changes in morphology, phenotype and electrophysiologic characteristics of primary afferent neurons that are affected by chemotherapy and to correlate these changes to behaviors reflective of evoked pain, mainly hyperalgesia and allodynia. However, hyperalgesia and allodynia may only represent one aspect of human pain, i.e., the sensory-discriminative component, while patients with CIPN often describe their pain using words like annoying, tiring and dreadful, which are affective-emotional descriptors that cannot be tested in experimental animals. To understand why some patients with CIPN develop neuropathic pain and others not, and which are the components of neuropathic pain that they are experiencing, experimental and clinical pain research should be combined. Emerging evidence suggests that changes in subsets of primary afferent nerve fibers may contribute to specific aspects of neuropathic pain in both preclinical models and in patients with CIPN. In addition, the role of cutaneous neuroimmune interactions is considered. Since obtaining dorsal root ganglia and peripheral nerves in patients is problematic, analyses performed on skin biopsies from preclinical models as well as patients provide an opportunity to study changes in primary afferent nerve fibers and to associate these changes to human pain. In addition, other biomarkers of small fiber damage in CIPN, like corneal confocal microscope and quantitative sensory testing, may be considered.

13.
Cancers (Basel) ; 14(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35740641

RESUMO

Glioblastoma is the most common and aggressive brain tumor, associated with poor prognosis and survival, representing a challenging medical issue for neurooncologists. Dysregulation of histone-modifying enzymes (HDACs) is commonly identified in many tumors and has been linked to cancer proliferation, changes in metabolism, and drug resistance. These findings led to the development of HDAC inhibitors, which are limited by their narrow therapeutic index. In this work, we provide the proof of concept for a delivery system that can improve the in vivo half-life and increase the brain delivery of Givinostat, a pan-HDAC inhibitor. Here, 150-nm-sized liposomes composed of cholesterol and sphingomyelin with or without surface decoration with mApoE peptide, inhibited human glioblastoma cell growth in 2D and 3D models by inducing a time- and dose-dependent reduction in cell viability, reduction in the receptors involved in cholesterol metabolism (from -25% to -75% of protein levels), and reduction in HDAC activity (-25% within 30 min). In addition, liposome-Givinostat formulations showed a 2.5-fold increase in the drug half-life in the bloodstream and a 6-fold increase in the amount of drug entering the brain in healthy mice, without any signs of overt toxicity. These features make liposomes loaded with Givinostat valuable as potential candidates for glioblastoma therapy.

14.
Neurotherapeutics ; 19(6): 1942-1950, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36129603

RESUMO

Hypothermia is a promising therapeutic strategy for severe vasospasm and other types of non-thrombotic cerebral ischemia, but its clinical application is limited by significant systemic side effects. We aimed to develop an intraventricular device for the controlled cooling of the cerebrospinal fluid, to produce a targeted hypothermia in the affected cerebral hemisphere with a minimal effect on systemic temperature. An intraventricular cooling device (acronym: V-COOL) was developed by in silico modelling, in vitro testing, and in vivo proof-of-concept application in healthy Wistar rats (n = 42). Cerebral cortical temperature, rectal temperature, and intracranial pressure were monitored at increasing flow rate (0.2 to 0.8 mL/min) and duration of application (10 to 60 min). Survival, neurological outcome, and MRI volumetric analysis of the ventricular system were assessed during the first 24 h. The V-COOL prototyping was designed to minimize extra-cranial heat transfer and intra-cranial pressure load. In vivo application of the V-COOL device produced a flow rate-dependent decrease in cerebral cortical temperature, without affecting systemic temperature. The target degree of cerebral cooling (- 3.0 °C) was obtained in 4.48 min at the flow rate of 0.4 mL/min, without significant changes in intracranial pressure. Survival and neurological outcome at 24 h showed no significant difference compared to sham-treated rats. MRI study showed a transient dilation of the ventricular system (+ 38%) in a subset of animals. The V-COOL technology provides an effective, rapid, selective, and safe cerebral cooling to a clinically relevant degree of - 3.0 °C.


Assuntos
Hipotermia Induzida , Hipotermia , Animais , Ratos , Temperatura Corporal , Ratos Wistar , Bioengenharia , Encéfalo
15.
Brain Sci ; 11(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499072

RESUMO

Peripheral neuropathies (PNs) are a type of common disease that hampers the quality of life of affected people. Treatment, in most cases, is just symptomatic and often ineffective. To improve drug discovery in this field, preclinical evidence is warranted. In vivo rodent models allow a multiparametric approach to test new therapeutic strategies, since they can allow pathogenetic and morphological studies different from the clinical setting. However, human readouts are warranted to promptly translate data from the bench to the bedside. A feasible solution would be neurophysiology, performed similarly at both sides. We describe a simple protocol that reproduces the standard clinical protocol of a neurophysiology hospital department. We devised the optimal montage for sensory and motor recordings (neurography) in mice, and we also implemented F wave testing and a short electromyography (EMG) protocol at rest. We challenged this algorithm by comparing control animals (BALB/c mice) with a model of mild neuropathy to grasp even subtle changes. The neurophysiological results were confirmed with neuropathology. The treatment group showed all expected alterations. Moreover, the neurophysiology matched the neuropathological analyses. Therefore, our protocol can be suggested to promptly translate data from the bench to the bedside and vice versa.

16.
J Neurosci Methods ; 363: 109323, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34391792

RESUMO

BACKGROUND: Peripheral neuropathy treatment is not always satisfactory. To fill this gap, inferences from bench side are warranted, where morphological and pathogenetic determinations can be performed. Nerve conduction studies (NCS) are ideal to translate results from preclinical to clinical setting. NEW METHODS: We propose a comprehensive 8-minute protocol for sensory-motor neurophysiological assessment, similar to routine clinical practice: sensory proximal and distal caudal nerves, motor caudal nerve, and sensory digital nerve recordings were used and tested in 2 different experimental settings. In Experiment 1 we compared control (CTRL) animals to a severe sensory-motor polyneuropathy (animals treated with vincristine [VCR]), and in Experiment 2 CTRL animals were compared to a mild sensory polyneuropathy (animals treated with oxaliplatin [OHP]). NCS were performed after 1-month of chemotherapy and matched with confirmatory neuropathological analyses. RESULTS: VCR treated animals showed, at NCS, a relevant sensory-motor polyneuropathy ensued at the end of treatment; whereas, OHP animals showed a mild distal sensory neuropathy. These patterns were confirmed by neuropathological analysis. COMPARISON WITH EXISTING METHODS: In literature, the majority of proposed neurophysiological protocols relies mainly on a single nerve testing, rather than a combination of them, and only a few studies tested both caudal and sciatic nerve branches, nevertheless not aiming at fully reproduce clinical protocols (e.g., seeking for length-dependency); to provide evidence of appropriateness of our protocol we applied a gold standard: neuropathology. CONCLUSION: The simple and rapid protocol here presented can be suggested as a good translation outcome measure in preclinical setting.


Assuntos
Condução Nervosa , Doenças do Sistema Nervoso Periférico , Animais , Neurofisiologia , Nervos Periféricos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico
17.
Front Pharmacol ; 12: 817236, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126148

RESUMO

Chemotherapy-induced peripheral neurotoxicity is a common dose-limiting side effect of several cancer chemotherapeutic agents, and no effective therapies exist. Here we constructed a systems pharmacology model of intracellular signaling in peripheral neurons to identify novel drug targets for preventing peripheral neuropathy associated with proteasome inhibitors. Model predictions suggested the combinatorial inhibition of TNFα, NMDA receptors, and reactive oxygen species should prevent proteasome inhibitor-induced neuronal apoptosis. Dexanabinol, an inhibitor of all three targets, partially restored bortezomib-induced reduction of proximal action potential amplitude and distal nerve conduction velocity in vitro and prevented bortezomib-induced mechanical allodynia and thermal hyperalgesia in rats, including a partial recovery of intraepidermal nerve fiber density. Dexanabinol failed to restore bortezomib-induced decreases in electrophysiological endpoints in rats, and it did not compromise bortezomib anti-cancer effects in U266 multiple myeloma cells and a murine xenograft model. Owing to its favorable safety profile in humans and preclinical efficacy, dexanabinol might represent a treatment option for bortezomib-induced neuropathic pain.

18.
Front Immunol ; 11: 626687, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613570

RESUMO

Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Neoplasias/tratamento farmacológico , Neuroimunomodulação/imunologia , Doenças do Sistema Nervoso Periférico/imunologia , Inibidores de Proteassoma/efeitos adversos , Taxoides/efeitos adversos , Alcaloides de Vinca/efeitos adversos , Antineoplásicos/farmacologia , Quimiocinas/metabolismo , Cisplatino/farmacologia , Disfunção Cognitiva/complicações , Citocinas/metabolismo , Humanos , Inflamação/complicações , Inflamação/metabolismo , Neoplasias/complicações , Neuralgia/metabolismo , Neuroimunomodulação/fisiologia , Inibidores de Proteassoma/farmacologia , Qualidade de Vida , Transdução de Sinais/efeitos dos fármacos , Taxoides/farmacologia , Alcaloides de Vinca/farmacologia
19.
Exp Neurol ; 325: 113141, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31865195

RESUMO

One of the most relevant dose-limiting adverse effects of platinum drugs is the development of a sensory peripheral neuropathy that highly impairs the patients' quality of life. Nowadays there are no available efficacy strategies for the treatment of platinum-induced peripheral neurotoxicity (PIPN), and the only way to prevent its development and progression is by reducing the dose of the cytostatic drug or even withdrawing the chemotherapy regimen. This clinical issue has been the main focus of hundreds of preclinical research works during recent decades. As a consequence, dozens of in vitro and in vivo models of PIPN have been developed to elucidate the molecular mechanisms involved in its development and to find neuroprotective targets. The apoptosis of peripheral neurons has been identified as the main mechanism involved in PIPN pathogenesis. This mechanism of DRG sensory neurons cell death is triggered by the nuclear and mitochondrial DNA platination together with the increase of the oxidative cellular status induced by the depletion of cytoplasmic antioxidant mechanisms. However, since there has been no successful transfer of preclinical results to clinical practise in terms of therapeutic approaches, some mechanisms of PIPN pathogenesis still remain to be elucidated. This review is focused on the pathogenic mechanisms underlying PIPN described up to now, provided by the critical analysis of in vitro and in vivo models.


Assuntos
Antineoplásicos/toxicidade , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Compostos de Platina/toxicidade , Animais , Modelos Animais de Doenças , Doenças do Sistema Nervoso Periférico/patologia
20.
Antioxidants (Basel) ; 9(7)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645985

RESUMO

Oxaliplatin (OHP) is an antineoplastic compound able to induce peripheral neurotoxicity. Oxidative stress has been suggested to be a key factor in the development of OHP-related peripheral neurotoxicity. Mangafodipir, a contrast agent possessing mitochondrial superoxide dismutase (MnSOD)-mimetic activity, has been tested as a cytoprotector in chemotherapy-induced peripheral neurotoxicity (CIPN). Calmangafodipir (PledOx®) has even better therapeutic activity. We investigated a BALB/c mouse model of OHP-related CIPN and the effects of the pre-treatment of calmangafodipir (2.5, 5, or 10 mg/kg intravenously) on sensory perception, and we performed a pathological study on skin biopsies to assess intraepidermal nerve fiber (IENF) density. At the end of the treatments, OHP alone or in pre-treatment with calmangafodipir 2.5 and 10 mg/kg, induced mechanical allodynia and cold thermal hyperalgesia, but calmangafodipir 5 mg/kg prevented these effects. Accordingly, OHP alone or in pre-treatment with calmangafodipir 2.5 and 10 mg/kg, induced a significant reduction in IENF density, but calmangafodipir 5 mg/kg prevented this reduction. These results confirm a protective effect of calmangafodipir against OHP-induced small fiber neuropathy. Interestingly, these results are in agreement with previous observations suggesting a U-shaped effect of calmangafodipir, with the 10 mg/kg dose less effective than the lower doses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa