Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982837

RESUMO

Aster koraiensis Nakai (AK) leaf reportedly ameliorates health problems, such as diabetes. However, the effects of AK on cognitive dysfunction or memory impairment remain unclear. This study investigated whether AK leaf extract could attenuate cognitive impairment. We found that AK extract reduced the production of nitric oxide (NO), tumour necrosis factor (TNF)-α, phosphorylated-tau (p-tau), and the expression of inflammatory proteins in lipopolysaccharide- or amyloid-ß-treated cells. AK extract exhibited inhibitory activity of control specific binding on N-methyl-D-aspartate (NMDA) receptors. Scopolamine-induced AD models were used chronically in rats and acutely in mice. Relative to negative controls (NC), hippocampal choline acetyltransferase (ChAT) and B-cell lymphoma 2 (Bcl2) activity was increased in rats chronically treated with scopolamine and fed an AK extract-containing diet. In the Y-maze test, spontaneous alterations were increased in the AK extract-fed groups compared to NC. Rats administered AK extract showed increased escape latency in the passive avoidance test. In the hippocampus of rats fed a high-AK extract diet (AKH), the expression of neuroactive ligand-receptor interaction-related genes, including Npy2r, Htr2c, and Rxfp1, was significantly altered. In the Morris water maze assay of mice acutely treated with scopolamine, the swimming times in the target quadrant of AK extract-treated groups increased significantly to the levels of the Donepezil and normal groups. We used Tg6799 Aß-overexpressing 5XFAD transgenic mice to investigate Aß accumulation in animals. In the AD model using 5XFAD, the administration of AK extract decreased amyloid-ß (Aß) accumulation and increased the number of NeuN antibody-reactive cells in the subiculum relative to the control group. In conclusion, AK extract ameliorated memory dysfunction by modulating ChAT activity and Bcl2-related anti-apoptotic pathways, affecting the expression of neuroactive ligand-receptor interaction-related genes and inhibiting Aß accumulation. Therefore, AK extract could be a functional material improving cognition and memory.


Assuntos
Doença de Alzheimer , Memória , Camundongos , Ratos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Ligantes , Transtornos da Memória/metabolismo , Escopolamina/efeitos adversos , Hipocampo/metabolismo , Camundongos Transgênicos , Aprendizagem em Labirinto , Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios/efeitos adversos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo
2.
Biochem Biophys Res Commun ; 534: 941-949, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33158479

RESUMO

Hypoxia has been suggested to induce epithelial-mesenchymal transition (EMT) in various cancer types via the transcription factor hypoxia-inducible factor-1 alpha (HIF-1α). Here, we demonstrated that TOPK upregulates EMT and the invasion of H460 nonsmall-cell lung cancer cells through the induction of the HIF-1α/Snail axis and hypoxic signaling. The expression of endogenous TOPK, phosphorylated TOPK, HIF-1α and Snail was significantly increased upon hypoxia exposure, but TOPK depletion markedly abrogated the induced mRNA and protein levels of HIF-1α and Snail. Interestingly, TOPK knockdown restored the hypoxia-induced suppression of E-cadherin and diminished hypoxia-induced N-cadherin expression. In addition, Snail depletion suppressed hypoxia-induced N-cadherin expression, which was attenuated by TOPK knockdown. Moreover, knockdown of Snail decreased hypoxia-induced nonsmall-cell lung cancer cell migration and invasion, which were suppressed by TOPK depletion. In summary, we conclude that TOPK positively regulates HIF-1α expression through hypoxia signaling and thereby promotes Snail expression, leading to EMT and the invasion of nonsmall-cell lung cancer cells. These findings suggest that TOPK plays a critical role as a novel mediator of hypoxia signaling that regulates nonsmall-cell lung cancer development.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Transição Epitelial-Mesenquimal , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Hipóxia Tumoral
3.
Int J Mol Sci ; 21(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322202

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by neurological dysfunction, including memory impairment, attributed to the accumulation of amyloid ß (Aß) in the brain. Although several studies reported possible mechanisms involved in Aß pathology, much remains unknown. Previous findings suggested that a protein regulated in development and DNA damage response 1 (REDD1), a stress-coping regulator, is an Aß-responsive gene involved in Aß cytotoxicity. However, we still do not know how Aß increases the level of REDD1 and whether REDD1 mediates Aß-induced synaptic dysfunction. To elucidate this, we examined the effect of Aß on REDD1-expression using acute hippocampal slices from mice, and the effect of REDD1 short hairpin RNA (shRNA) on Aß-induced synaptic dysfunction. Lastly, we observed the effect of REDD1 shRNA on memory deficit in an AD-like mouse model. Through the experiments, we found that Aß-incubated acute hippocampal slices showed increased REDD1 levels. Moreover, Aß injection into the lateral ventricle increased REDD1 levels in the hippocampus. Anisomycin, but not actinomycin D, blocked Aß-induced increase in REDD1 levels in the acute hippocampal slices, suggesting that Aß may increase REDD1 translation rather than transcription. Aß activated Fyn/ERK/S6 cascade, and inhibitors for Fyn/ERK/S6 or mGluR5 blocked Aß-induced REDD1 upregulation. REDD1 inducer, a transcriptional activator, and Aß blocked synaptic plasticity in the acute hippocampal slices. REDD1 inducer inhibited mTOR/Akt signaling. REDD1 shRNA blocked Aß-induced synaptic deficits. REDD1 shRNA also blocked Aß-induced memory deficits in passive-avoidance and object-recognition tests. Collectively, these results demonstrate that REDD1 participates in Aß pathology and could be a target for AD therapy.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/farmacologia , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transtornos da Memória/metabolismo , Sinapses/metabolismo , Fatores de Transcrição/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anisomicina/farmacologia , Dactinomicina/farmacologia , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Transtornos da Memória/genética , Transtornos da Memória/patologia , Testes de Memória e Aprendizagem , Camundongos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , RNA Interferente Pequeno , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/genética , Sinapses/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
4.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456197

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. The neuropathological features of AD include amyloid-ß (Aß) deposition and hyperphosphorylated tau accumulation. Although several clinical trials have been conducted to identify a cure for AD, no effective drug or treatment has been identified thus far. Recently, the potential use of non-pharmacological interventions to prevent or treat AD has gained attention. Low-dose ionizing radiation (LDIR) is a non-pharmacological intervention which is currently being evaluated in clinical trials for AD patients. However, the mechanisms underlying the therapeutic effects of LDIR therapy have not yet been established. In this study, we examined the effect of LDIR on Aß accumulation and Aß-mediated pathology. To investigate the short-term effects of low-moderate dose ionizing radiation (LMDIR), a total of 9 Gy (1.8 Gy per fraction for five times) were radiated to 4-month-old 5XFAD mice, an Aß-overexpressing transgenic mouse model of AD, and then sacrificed at 4 days after last exposure to LMDIR. Comparing sham-exposed and LMDIR-exposed 5XFAD mice indicated that short-term exposure to LMDIR did not affect Aß accumulation in the brain, but significantly ameliorated synaptic degeneration, neuronal loss, and neuroinflammation in the hippocampal formation and cerebral cortex. In addition, a direct neuroprotective effect was confirmed in SH-SY5Y neuronal cells treated with Aß1-42 (2 µM) after single irradiation (1 Gy). In BV-2 microglial cells exposed to Aß and/or LMDIR, LMDIR therapy significantly inhibited the production of pro-inflammatory molecules and activation of the nuclear factor-kappa B (NF-κB) pathway. These results indicate that LMDIR directly ameliorated neurodegeneration and neuroinflammation in vivo and in vitro. Collectively, our findings suggest that the therapeutic benefits of LMDIR in AD may be mediated by its neuroprotective and anti-inflammatory effects.


Assuntos
Doença de Alzheimer/radioterapia , Irradiação Craniana/métodos , Animais , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos da radiação , Feminino , Humanos , Camundongos , NF-kappa B/metabolismo , Doses de Radiação , Radiação Ionizante
5.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630597

RESUMO

Alzheimer's disease (AD) is the most common type of dementia. AD involves major pathologies such as amyloid-ß (Aß) plaques and neurofibrillary tangles in the brain. During the progression of AD, microglia can be polarized from anti-inflammatory M2 to pro-inflammatory M1 phenotype. The activation of triggering receptor expressed on myeloid cells 2 (TREM2) may result in microglia phenotype switching from M1 to M2, which finally attenuated Aß deposition and memory loss in AD. Low-dose ionizing radiation (LDIR) is known to ameliorate Aß pathology and cognitive deficits in AD; however, the therapeutic mechanisms of LDIR against AD-related pathology have been little studied. First, we reconfirm that LDIR (two Gy per fraction for five times)-treated six-month 5XFAD mice exhibited (1) the reduction of Aß deposition, as reflected by thioflavins S staining, and (2) the improvement of cognitive deficits, as revealed by Morris water maze test, compared to sham-exposed 5XFAD mice. To elucidate the mechanisms of LDIR-induced inhibition of Aß accumulation and memory loss in AD, we examined whether LDIR regulates the microglial phenotype through the examination of levels of M1 and M2 cytokines in 5XFAD mice. In addition, we investigated the direct effects of LDIR on lipopolysaccharide (LPS)-induced production and secretion of M1/M2 cytokines in the BV-2 microglial cells. In the LPS- and LDIR-treated BV-2 cells, the M2 phenotypic marker CD206 was significantly increased, compared with LPS- and sham-treated BV-2 cells. Finally, the effect of LDIR on M2 polarization was confirmed by detection of increased expression of TREM2 in LPS-induced BV2 cells. These results suggest that LDIR directly induced phenotype switching from M1 to M2 in the brain with AD. Taken together, our results indicated that LDIR modulates LPS- and Aß-induced neuroinflammation by promoting M2 polarization via TREM2 expression, and has beneficial effects in the AD-related pathology such as Aß deposition and memory loss.


Assuntos
Doença de Alzheimer/metabolismo , Microglia/metabolismo , Microglia/efeitos da radiação , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Fenótipo , Radiação Ionizante , Receptores Imunológicos/metabolismo
6.
Int J Mol Sci ; 21(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486013

RESUMO

It has been reported that damage to the mitochondria affects the progression of Alzheimer's disease (AD), and that mitochondrial dysfunction is improved by omega-3. However, no animal or cell model studies have confirmed whether omega-3 inhibits AD pathology related to mitochondria deficits. In this study, we aimed to (1) identify mitigating effects of endogenous omega-3 on mitochondrial deficits and AD pathology induced by amyloid beta (Aß) in fat-1 mice, a transgenic omega-3 polyunsaturated fatty acids (PUFAs)-producing animal; (2) identify if docosahexaenoic acid (DHA) improves mitochondrial deficits induced by Aß in HT22 cells; and (3) verify improvement effects of DHA administration on mitochondrial deficits and AD pathology in B6SJL-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax (5XFAD), a transgenic Aß-overexpressing model. We found that omega-3 PUFAs significantly improved Aß-induced mitochondrial pathology in fat-1 mice. In addition, our in vitro and in vivo findings demonstrate that DHA attenuated AD-associated pathologies, such as mitochondrial impairment, Aß accumulation, neuroinflammation, neuronal loss, and impairment of adult hippocampal neurogenesis.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Mitocôndrias/patologia , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Feminino , Genótipo , Hipocampo/metabolismo , Hipocampo/patologia , Processamento de Imagem Assistida por Computador , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Neurogênese , Neurônios/metabolismo
7.
Nanomedicine ; 17: 297-307, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30794963

RESUMO

The aggregation and accumulation of amyloid beta (Aß) peptide is believed to be the primary cause of Alzheimer's disease (AD) pathogenesis. Vitamin D-binding protein (DBP) can attenuate Aß aggregation and accumulation. A biocompatible polymer poly (D,L-lactic acid-co-glycolic acid) (PLGA) can be loaded with therapeutic agents and control the rate of their release. In the present study, a PLGA-based drug delivery system was used to examine the therapeutic effects of DBP-PLGA nanoparticles in Aß-overexpressing (5XFAD) mice. DBP was loaded into PLGA nanoparticles and the characteristics of the DBP-PLGA nanoparticles were analyzed. Using a thioflavin-T assay, we observed that DBP-PLGA nanoparticles significantly inhibited Aß aggregation in vitro. In addition, we found that intravenous injection of DBP-PLGA nanoparticles significantly attenuated the Aß accumulation, neuroinflammation, neuronal loss and cognitive dysfunction in the 5XFAD mice. Collectively, our results suggest that DBP-PLGA nanoparticles could be a promising therapeutic candidate for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Portadores de Fármacos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteína de Ligação a Vitamina D/administração & dosagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Masculino , Camundongos , Camundongos Transgênicos , Nanopartículas/química , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteína de Ligação a Vitamina D/uso terapêutico
8.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861329

RESUMO

Nuclear receptor related-1 (Nurr1) protein performs a crucial role in hippocampal neural stem cell (hNSC) development as well as cognitive functions. We previously demonstrated that the pharmacological stimulation of Nurr1 by amodiaquine (AQ) promotes spatial memory by enhancing adult hippocampal neurogenesis. However, the role of Nurr1 in the cell cycle regulation of the adult hippocampus has not been investigated. This study aimed to examine changes in the cell cycle-related molecules involved in adult hippocampal neurogenesis induced by Nurr1 pharmacological stimulation. Fluorescence-activated cell sorting (FACS) analysis showed that AQ improved the progression of cell cycle from G0/G1 to S phase in a dose-dependent manner, and MEK1 or PI3K inhibitors attenuated this progression. In addition, AQ treatment increased the expression of cell proliferation markers MCM5 and PCNA, and transcription factor E2F1. Furthermore, pharmacological stimulation of Nurr1 by AQ increased the expression levels of positive cell cycle regulators such as cyclin A and cyclin-dependent kinases (CDK) 2. In contrast, levels of CDK inhibitors p27KIP1 and p57KIP2 were reduced upon treatment with AQ. Similar to the in vitro results, RT-qPCR analysis of AQ-administered mice brains revealed an increase in the levels of markers of cell cycle progression, PCNA, MCM5, and Cdc25a. Finally, AQ administration resulted in decreased p27KIP1 and increased CDK2 levels in the dentate gyrus of the mouse hippocampus, as quantified immunohistochemically. Our results demonstrate that the pharmacological stimulation of Nurr1 in adult hNSCs by AQ promotes the cell cycle by modulating cell cycle-related molecules.


Assuntos
Células-Tronco Adultas/metabolismo , Ciclo Celular/genética , Hipocampo/citologia , Células-Tronco Neurais/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Células-Tronco Adultas/efeitos dos fármacos , Amodiaquina/farmacologia , Animais , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Proliferação de Células , Giro Denteado/metabolismo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Ratos
9.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426329

RESUMO

It is widely known that the degeneration of neural circuits is prominent in the brains of Alzheimer's disease (AD) patients. The reciprocal connectivity of the medial septum (MS) and hippocampus, which constitutes the septo-hippocampo-septal (SHS) loop, is known to be associated with learning and memory. Despite the importance of the reciprocal projections between the MS and hippocampus in AD, the alteration of bidirectional connectivity between two structures has not yet been investigated at the mesoscale level. In this study, we adopted AD animal model, five familial AD mutations (5XFAD) mice, and anterograde and retrograde tracers, BDA and DiI, respectively, to visualize the pathology-related changes in topographical connectivity of the SHS loop in the 5XFAD brain. By comparing 4.5-month-old and 14-month-old 5XFAD mice, we successfully identified key circuit components of the SHS loop altered in 5XFAD brains. Remarkably, the SHS loop began to degenerate in 4.5-month-old 5XFAD mice before the onset of neuronal loss. The impairment of connectivity between the MS and hippocampus was accelerated in 14-month-old 5XFAD mice. These results demonstrate, for the first time, topographical evidence for the degradation of the interconnection between the MS and hippocampus at the mesoscale level in a mouse model of AD. Our results provide structural and functional insights into the interconnectivity of the MS and hippocampus, which will inform the use and development of various therapeutic approaches that target neural circuits for the treatment of AD.


Assuntos
Doença de Alzheimer/patologia , Hipocampo/patologia , Septo do Cérebro/patologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos Transgênicos , Mutação , Vias Neurais/metabolismo , Vias Neurais/patologia , Presenilina-1/genética , Septo do Cérebro/metabolismo
10.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234321

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by neurodegeneration and cognitive deficits. Amyloid beta (Aß) peptide is known to be a major cause of AD pathogenesis. However, recent studies have clarified that mitochondrial deficiency is also a mediator or trigger for AD development. Interestingly, red ginseng (RG) has been demonstrated to have beneficial effects on AD pathology. However, there is no evidence showing whether RG extract (RGE) can inhibit the mitochondrial deficit-mediated pathology in the experimental models of AD. The effects of RGE on Aß-mediated mitochondrial deficiency were investigated in both HT22 mouse hippocampal neuronal cells and the brains of 5XFAD Aß-overexpressing transgenic mice. To examine whether RGE can affect mitochondria-related pathology, we used immunohistostaining to study the effects of RGE on Aß accumulation, neuroinflammation, neurodegeneration, and impaired adult hippocampal neurogenesis in hippocampal formation of 5XFAD mice. In vitro and in vivo findings indicated that RGE significantly improves Aß-induced mitochondrial pathology. In addition, RGE significantly ameliorated AD-related pathology, such as Aß deposition, gliosis, and neuronal loss, and deficits in adult hippocampal neurogenesis in brains with AD. Our results suggest that RGE may be a mitochondria-targeting agent for the treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/efeitos dos fármacos , Panax , Preparações de Plantas/uso terapêutico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Panax/química , Preparações de Plantas/química
11.
Int J Mol Sci ; 19(6)2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29912176

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive deficits, neuroinflammation, and neuronal death. The primary pathogenic cause is believed to be the accumulation of pathogenic amyloid beta (Aß) assemblies in the brain. Ghrelin, which is a peptide hormone predominantly secreted from the stomach, is an endogenous ligand for the growth hormone secretagogue-receptor type 1a (GHS-R1a). MK-0677 is a ghrelin agonist that potently stimulates the GHS-R1a ghrelin receptor. Interestingly, previous studies have shown that ghrelin improves cognitive impairments and attenuates neuronal death and neuroinflammation in several neurological disorders. However, it is unknown whether MK-0677 can affect Aß accumulation or Aß-mediated pathology in the brains of patients with AD. Therefore, we examined the effects of MK-0677 administration on AD-related pathology in 5XFAD mice, an Aß-overexpressing transgenic mouse model of AD. MK-0677 was intraperitoneally administered to three-month-old 5XFAD mice. To visualize Aß accumulation, neuroinflammation, and neurodegeneration, thioflavin-S staining and immunostaining with antibodies against Aß (4G8), ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), neuronal nuclear antigen (NeuN), and synaptophysin were conducted in the neocortex of 5XFAD and wild-type mice, and to evaluate changes of phosphorylated cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB) levels, immunostaining with antibody against pCREB was performed in dentate gyrus of the hippocampus of 5XFAD and wild-type mice. The histological analyses indicated that MK-0677-treated 5XFAD mice showed reduced Aß deposition, gliosis, and neuronal and synaptic loss in the deep cortical layers, and inhibited the decrement of pCREB levels in dentate gyrus of the hippocampus compared to vehicle-treated 5XFAD mice. Our results showed that activation of the ghrelin receptor with MK-0677 inhibited the Aß burden, neuroinflammation, and neurodegeneration, which suggested that MK-0677 might have potential as a treatment of the early phase of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Grelina/agonistas , Indóis/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Compostos de Espiro/uso terapêutico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Grelina/metabolismo , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Fármacos Neuroprotetores/farmacologia , Compostos de Espiro/farmacologia
12.
Int J Mol Sci ; 19(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551564

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease, which is accompanied by memory loss and cognitive dysfunction. Although a number of trials to treat AD are in progress, there are no drugs available that inhibit the progression of AD. As the aggregation of amyloid-ß (Aß) peptides in the brain is considered to be the major pathology of AD, inhibition of Aß aggregation could be an effective strategy for AD treatment. Jowiseungchungtang (JWS) is a traditional oriental herbal formulation that has been shown to improve cognitive function in patients or animal models with dementia. However, there are no reports examining the effects of JWS on Aß aggregation. Thus, we investigated whether JWS could protect against both Aß aggregates and Aß-mediated pathology such as neuroinflammation, neurodegeneration, and impaired adult neurogenesis in 5 five familial Alzheimer's disease mutations (5XFAD) mice, an animal model for AD. In an in vitro thioflavin T assay, JWS showed a remarkable anti-Aß aggregation effect. Histochemical analysis indicated that JWS had inhibitory effects on Aß aggregation, Aß-induced pathologies, and improved adult hippocampal neurogenesis in vivo. Taken together, these results suggest the therapeutic possibility of JWS for AD targeting Aß aggregation, Aß-mediated neurodegeneration, and impaired adult hippocampal neurogenesis.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Agregados Proteicos/efeitos dos fármacos , Administração Oral , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Camundongos , Mutação , Neurogênese
13.
J Neurochem ; 132(2): 254-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25156412

RESUMO

The functional roles of the orphan nuclear receptor, Nurr1, have been extensively studied and well established in the development and survival of midbrain dopamine neurons. As Nurr1 and other NR4A members are widely expressed in the brain in overlapping and distinct manners, it has been an open question whether Nurr1 has important function(s) in other brain areas. Recent studies suggest that up-regulation of Nurr1 expression is critical for cognitive functions and/or long-term memory in forebrain areas including hippocampal formation. Questions remain about the association between Nurr1 expression and Alzheimer's disease (AD) brain pathology. Here, using our newly developed Nurr1-selective antibody, we report that Nurr1 protein is prominently expressed in brain areas with Aß accumulation, that is, the subiculum and the frontal cortex, in the 5XFAD mouse and that Nurr1 is highly co-expressed with Aß at early stages. Furthermore, the number of Nurr1-expressing cells significantly declines in the 5XFAD mouse in an age-dependent manner, accompanied by increased plaque deposition. Thus, our findings suggest that altered expression of Nurr1 is associated with AD progression. Using our newly developed Nurr1-selective antibody, we show that Nurr1 protein is prominently expressed in brain areas accumulating amyloid-beta (Aß) in the transgenic mouse model of Alzheimer's disease (AD) and that Nurr1 is highly co-expressed with Aß at early stages (upper panel). Furthermore, in the AD brain the number of Nurr1-expressing cells significantly declines in an age-dependent manner concomitant with increased Aß accumulation (lower diagram) highlighting a possible Nurr1 involvement in AD pathology.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Córtex Cerebral/patologia , Modelos Animais de Doenças , Progressão da Doença , Técnica Direta de Fluorescência para Anticorpo , Hipocampo/patologia , Técnicas Imunoenzimáticas , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
15.
J Neuroinflammation ; 12: 102, 2015 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-26001832

RESUMO

BACKGROUND: Heat stress induces many pathophysiological responses and has a profound impact on brain structure. It has been demonstrated that exposure to high temperature induces cognitive impairment in experimental animals and humans. Although the effects of heat stress have long been studied, the mechanisms by which heat stress affects brain structure and cognition not well understood. METHODS: In our longitudinal study of mice exposed to heat over 7, 14, or 42 days, we found that heat stress time dependently impaired cognitive function as determined by Y-maze, passive avoidance, and novel object recognition tests. To elucidate the histological mechanism by which thermal stress inhibited cognitive abilities, we examined heat stress-induced inflammation in the hippocampus. RESULTS: In mice subjected to heat exposure, we found: 1) an increased number of glial fibrillary acid protein (GFAP)- and macrophage-1 antigen (Mac-1)-positive cells, 2) up-regulated nuclear factor (NF)-κB, a master regulator of inflammation, and 3) marked increases in cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokine interleukin (IL)-1ß and tumor necrosis factor (TNF)-α in the mouse hippocampus. We also observed that neuronal and synaptic densities were degenerated significantly in hippocampal regions after heat exposure, as determined by histological analysis of neuronal nuclei (NeuN), postsynaptic density protein 95 (PSD-95), and synaptophysin expression. Moreover, in heat-exposed mice, we found that the number of cells positive for doublecortin (DCX), a marker of neurogenesis, was significantly decreased compared with control mice. Finally, anti-inflammatory agent minocycline inhibited the heat stress-induced cognitive deficits and astogliosis in mice. CONCLUSIONS: Together, these findings suggest that heat stress can lead to activation of glial cells and induction of inflammatory molecules in the hippocampus, which may act as causative factors for memory loss, neuronal death, and impaired adult neurogenesis.


Assuntos
Transtornos de Estresse por Calor/complicações , Inflamação/etiologia , Inflamação/fisiopatologia , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Neurite (Inflamação)/etiologia , Neurite (Inflamação)/fisiopatologia , Animais , Transtornos Cognitivos , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Proteína Duplacortina , Hipocampo/patologia , Hipocampo/fisiopatologia , Temperatura Alta/efeitos adversos , Inflamação/metabolismo , Estudos Longitudinais , Masculino , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/fisiopatologia , Neurogênese/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo
16.
Stem Cells ; 32(7): 1789-804, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24648391

RESUMO

GABAergic interneurons regulate cortical neural networks by providing inhibitory inputs, and their malfunction, resulting in failure to intricately regulate neural circuit balance, is implicated in brain diseases such as Schizophrenia, Autism, and Epilepsy. During early development, GABAergic interneuron progenitors arise from the ventral telencephalic area such as medial ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) by the actions of secreted signaling molecules from nearby organizers, and migrate to their target sites where they form local synaptic connections. In this study, using combinatorial and temporal modulation of developmentally relevant dorsoventral and rostrocaudal signaling pathways (SHH, Wnt, and FGF8), we efficiently generated MGE cells from multiple human pluripotent stem cells. Most importantly, modulation of FGF8/FGF19 signaling efficiently directed MGE versus CGE differentiation. Human MGE cells spontaneously differentiated into Lhx6-expressing GABAergic interneurons and showed migratory properties. These human MGE-derived neurons generated GABA, fired action potentials, and displayed robust GABAergic postsynaptic activity. Transplantation into rodent brains results in well-contained neural grafts enriched with GABAergic interneurons that migrate in the host and mature to express somatostatin or parvalbumin. Thus, we propose that signaling modulation recapitulating normal developmental patterns efficiently generate human GABAergic interneurons. This strategy represents a novel tool in regenerative medicine, developmental studies, disease modeling, bioassay, and drug screening.


Assuntos
Encéfalo/citologia , Interneurônios/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Padronização Corporal , Encéfalo/embriologia , Linhagem Celular , Fatores de Crescimento de Fibroblastos/fisiologia , Neurônios GABAérgicos/fisiologia , Proteínas Hedgehog/metabolismo , Humanos , Interneurônios/transplante , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neurais/fisiologia , Transdução de Sinais
17.
Biochem Biophys Res Commun ; 449(1): 8-13, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24796668

RESUMO

Recently, increased attention has been directed towards medicinal extracts as potential new drug candidates for dementia. Ginger has long been used as an important ingredient in cooking and traditional herbal medicine. In particular, ginger has been known to have disease-modifying effects in Alzheimer's disease (AD). However, there is no evidence of which constituents of ginger exhibit therapeutic effects against AD. A growing number of experimental studies suggest that 6-shogaol, a bioactive component of ginger, may play an important role as a memory-enhancing and anti-oxidant agent against neurological diseases. 6-Shogaol has also recently been shown to have anti-neuroinflammatory effects in lipopolysaccharide (LPS)-treated astrocytes and animal models of Parkinson's disease, LPS-induced inflammation and transient global ischemia. However, it is still unknown whether 6-shogaol has anti-inflammatory effects against oligomeric forms of the Aß (AßO) in animal brains. Furthermore, the effects of 6-shogaol against memory impairment in dementia models are also yet to be investigated. In this study, we found that administration of 6-shogaol significantly reduced microgliosis and astrogliosis in intrahippocampal AßO-injected mice, ameliorated AßO and scopolamine-induced memory impairment, and elevated NGF levels and pre- and post-synaptic marker in the hippocampus. All these results suggest that 6-shogaol may play a role in inhibiting glial cell activation and reducing memory impairment in animal models of dementia.


Assuntos
Catecóis/administração & dosagem , Transtornos Cognitivos/tratamento farmacológico , Demência/tratamento farmacológico , Encefalite/tratamento farmacológico , Animais , Cognição/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Demência/complicações , Demência/fisiopatologia , Relação Dose-Resposta a Droga , Encefalite/complicações , Encefalite/fisiopatologia , Zingiber officinale/química , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/administração & dosagem , Extratos Vegetais/administração & dosagem , Resultado do Tratamento
18.
Aging Dis ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38739932

RESUMO

The dynamic interaction between the brain and the skin is termed the 'skin-brain axis.' Changes in the skin not only reflect conditions in the brain but also exert direct and indirect effects on the brain. Interestingly, the connection between the skin and brain is crucial for understanding aging and neurodegenerative diseases. Several studies have shown an association between Alzheimer's disease (AD) and various skin disorders, such as psoriasis, bullous pemphigoid, and skin cancer. Previous studies have shown a significantly increased risk of new-onset AD in patients with psoriasis. In contrast, skin cancer may reduce the risk of developing AD. Accumulating evidence suggests an interaction between skin disease and AD; however, AD-associated pathological changes mediated by the skin-brain axis are not yet clearly defined. While some studies have reported on the diagnostic implications of the skin-brain axis in AD, few have discussed its potential therapeutic applications. In this review, we address the pathological changes mediated by the skin-brain axis in AD. Furthermore, we summarize (1) the diagnostic implications elucidated through the role of the skin-brain axis in AD and (2) the therapeutic implications for AD based on the skin-brain axis. Our review suggests that a potential therapeutic approach targeting the skin-brain axis will enable significant advances in the treatment of AD.

19.
Biomed Pharmacother ; 177: 117090, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968796

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanied by irreversible cognitive impairment. A deleterious feedback loop between oxidative stress and neuroinflammation in early AD exacerbates AD-related pathology. Platycodon grandiflorum root extract (PGE) has antioxidant and anti-inflammatory effects in several organs. However, the mechanisms underlying the effects of PGE in the brain remain unclear, particularly regarding its impact on oxidative/inflammatory damage and Aß deposition. Thus, we aim to identify the mechanism through which PGE inhibits Aß deposition and oxidative stress in the brain by conducting biochemical and histological analyses. First, to explore the antioxidant mechanism of PGE in the brain, we induced oxidative stress in mice injected with scopolamine and investigated the effect of PGE on cognitive decline and oxidative damage. We also assessed the effect of PGE on reactive oxygen species (ROS) generation and the expressions of antioxidant enzymes and neurotrophic factor in H2O2- and Aß-treated HT22 hippocampal cells. Next, we investigated whether PGE, which showed antioxidant effects, could reduce Aß deposition by mitigating neuroinflammation, especially microglial phagocytosis. We directly verified the effect of PGE on microglial phagocytosis, microglial activation markers, and pro-inflammatory cytokines in Aß-treated BV2 microglial cells. Moreover, we examined the effect of PGE on neuroinflammation, inducing microglial responses in Aß-overexpressing 5XFAD transgenic mice. PGE exerts antioxidant effects in the brain, enhances microglial phagocytosis of Aß, and inhibits neuroinflammation and Aß deposition, ultimately preventing neuronal cell death in AD. Taken together, our findings indicate that the therapeutic potential of PGE in AD is mediated by its targeting of multiple pathological processes.

20.
Aging Cell ; : e14231, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952076

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder associated with behavioral and cognitive impairments. Unfortunately, the drugs the Food and Drug Administration currently approved for AD have shown low effectiveness in delaying the progression of the disease. The focus has shifted to non-pharmacological interventions (NPIs) because of the challenges associated with pharmacological treatments for AD. One such intervention is environmental enrichment (EE), which has been reported to restore cognitive decline associated with AD effectively. However, the therapeutic mechanisms by which EE improves symptoms associated with AD remain unclear. Therefore, this study aimed to reveal the mechanisms underlying the alleviating effects of EE on AD symptoms using histological, proteomic, and neurotransmitter-related analyses. Wild-type (WT) and 5XFAD mice were maintained in standard housing or EE conditions for 4 weeks. First, we confirmed the mitigating effects of EE on cognitive impairment in an AD animal model. Then, histological analysis revealed that EE reduced Aß accumulation, neuroinflammation, neuronal death, and synaptic loss in the AD brain. Moreover, proteomic analysis by liquid chromatography-tandem mass spectrometry showed that EE enhanced synapse- and neurotransmitter-related networks and upregulated synapse- and neurotransmitter-related proteins in the AD brain. Furthermore, neurotransmitter-related analyses showed an increase in acetylcholine and serotonin concentrations as well as a decrease in polyamine concentration in the frontal cortex and hippocampus of 5XFAD mice raised under EE conditions. Our findings demonstrate that EE restores cognitive impairment by alleviating AD pathology and regulating synapse-related proteins and neurotransmitters. Our study provided neurological evidence for the application of NPIs in treating AD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa