Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 173(7): 1650-1662.e14, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29887376

RESUMO

NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP) elongation complexes (ECs) across most genes, enhancing elongation by suppressing RNAP backtracking and coordinating ρ-dependent termination and translation. The NusG paralog RfaH engages the EC only at operon polarity suppressor (ops) sites and suppresses both backtrack and hairpin-stabilized pausing. We used single-particle cryoelectron microscopy (cryo-EM) to determine structures of ECs at ops with NusG or RfaH. Both factors chaperone base-pairing of the upstream duplex DNA to suppress backtracking, explaining stimulation of elongation genome-wide. The RfaH-opsEC structure reveals how RfaH confers operon specificity through specific recognition of an ops hairpin in the single-stranded nontemplate DNA and tighter binding to the EC to exclude NusG. Tight EC binding by RfaH sterically blocks the swiveled RNAP conformation necessary for hairpin-stabilized pausing. The universal conservation of NusG/RfaH/Spt5 suggests that the molecular mechanisms uncovered here are widespread.


Assuntos
Proteínas de Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Domínio Catalítico , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Conformação de Ácido Nucleico , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Óperon de RNAr/genética
2.
Mol Cell ; 69(5): 802-815.e5, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499135

RESUMO

Sequence-specific pausing by RNA polymerase (RNAP) during transcription plays crucial and diverse roles in gene expression. In bacteria, RNA structures are thought to fold within the RNA exit channel of the RNAP and can increase pause lifetimes significantly. The biophysical mechanism of pausing is uncertain. We used single-particle cryo-EM to determine structures of paused complexes, including a 3.8-Å structure of an RNA hairpin-stabilized, paused RNAP that coordinates RNA folding in the his operon attenuation control region of E. coli. The structures revealed a half-translocated pause state (RNA post-translocated, DNA pre-translocated) that can explain transcriptional pausing and a global conformational change of RNAP that allosterically inhibits trigger loop folding and can explain pause hairpin action. Pause hairpin interactions with the RNAP RNA exit channel suggest how RNAP guides the formation of nascent RNA structures.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Dobramento de RNA , RNA Bacteriano/química , Transcrição Gênica , Regulação Alostérica , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Domínios Proteicos , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
3.
Mol Cell ; 50(6): 882-93, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23769674

RESUMO

Transcriptional pausing, which regulates transcript elongation in both prokaryotes and eukaryotes, is thought to involve formation of alternative RNA polymerase conformations in which nucleotide addition is inhibited in part by restriction of trigger loop (TL) folding. The polymorphous TL must convert from a random coil to a helical hairpin that contacts the nucleotide triphosphate (NTP) substrate to allow rapid nucleotide addition. Understanding the distribution of TL conformations in different enzyme states is made difficult by the TL's small size and sensitive energetics. Here, we report a Cys-pair reporter strategy to elucidate the relative occupancies of different TL conformations in E. coli RNA polymerase based on the ability of Cys residues engineered into the TL and surrounding regions to form disulfide bonds. Our results indicate that a paused complex stabilized by a nascent RNA hairpin favors nonproductive TL conformations that persist after NTP binding but can be reversed by the elongation factor RfaH.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia , RNA/química , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Sequência de Bases , Cistamina/química , Cistina/química , Proteínas de Escherichia coli/química , Guanosina Trifosfato/química , Sequências Repetidas Invertidas , Modelos Moleculares , Oxirredução , Fatores de Alongamento de Peptídeos/química , Ligação Proteica , Conformação Proteica , Transativadores/química , Fatores de Elongação da Transcrição/química
4.
Nucleic Acids Res ; 42(20): 12707-21, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25336618

RESUMO

The conformational dynamics of the polymorphous trigger loop (TL) in RNA polymerase (RNAP) underlie multiple steps in the nucleotide addition cycle and diverse regulatory mechanisms. These mechanisms include nascent RNA hairpin-stabilized pausing, which inhibits TL folding into the trigger helices (TH) required for rapid nucleotide addition. The nascent RNA pause hairpin forms in the RNA exit channel and promotes opening of the RNAP clamp domain, which in turn stabilizes a partially folded, paused TL conformation that disfavors TH formation. We report that inhibiting TH unfolding with a disulfide crosslink slowed multiround nucleotide addition only modestly but eliminated hairpin-stabilized pausing. Conversely, a substitution that disrupts the TH folding pathway and uncouples establishment of key TH-NTP contacts from complete TH formation and clamp movement allowed rapid catalysis and eliminated hairpin-stabilized pausing. We also report that the active-site distal arm of the TH aids TL folding, but that a 188-aa insertion in the Escherichia coli TL (sequence insertion 3; SI3) disfavors TH formation and stimulates pausing. The effect of SI3 depends on the jaw domain, but not on downstream duplex DNA. Our results support the view that both SI3 and the pause hairpin modulate TL folding in a constrained pathway of intermediate states.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia , Biocatálise , Domínio Catalítico , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Mutação , Nucleotídeos/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Desdobramento de Proteína , Transcrição Gênica
6.
J Mol Biol ; 431(4): 696-713, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30630008

RESUMO

In bacteria, disassembly of elongating transcription complexes (ECs) can occur at intrinsic terminators in a 2- to 3-nucleotide window after transcription of multiple kilobase pairs of DNA. Intrinsic terminators trigger pausing on weak RNA-DNA hybrids followed by formation of a strong, GC-rich stem-loop in the RNA exit channel of RNA polymerase (RNAP), inactivating nucleotide addition and inducing dissociation of RNA and RNAP from DNA. Although the movements of RNA and DNA during intrinsic termination have been studied extensively leading to multiple models, the effects of RNAP conformational changes remain less well defined. RNAP contains a clamp domain that closes around the nucleic acid scaffold during transcription initiation and can be displaced by either swiveling or opening motions. Clamp opening is proposed to promote termination by releasing RNAP-nucleic acid contacts. We developed a cysteine crosslinking assay to constrain clamp movements and study effects on intrinsic termination. We found that biasing the clamp into different conformations perturbed termination efficiency, but that perturbations were due primarily to changes in elongation rate, not the competing rate at which ECs commit to termination. After commitment, however, inhibiting clamp movements slowed release of DNA but not of RNA from the EC. We also found that restricting trigger-loop movements with the RNAP inhibitor microcin J25 prior to commitment inhibits termination, in agreement with a recently proposed multistate-multipath model of intrinsic termination. Together our results support views that termination commitment and DNA release are separate steps and that RNAP may remain associated with DNA after termination.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , DNA/metabolismo , RNA/metabolismo , Regiões Terminadoras Genéticas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Conformação de Ácido Nucleico , Ácidos Nucleicos/metabolismo , Nucleotídeos/metabolismo , Transcrição Gênica/fisiologia
7.
Elife ; 82019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30720429

RESUMO

RNA polymerases (RNAPs) contain a conserved 'secondary channel' which binds regulatory factors that modulate transcription initiation. In Escherichia coli, the secondary channel factors (SCFs) GreB and DksA both repress ribosomal RNA (rRNA) transcription, but SCF loading and repression mechanisms are unclear. We observed in vitro fluorescently labeled GreB molecules binding to single RNAPs and initiation of individual transcripts from an rRNA promoter. GreB arrived and departed from promoters only in complex with RNAP. GreB did not alter initial RNAP-promoter binding but instead blocked a step after conformational rearrangement of the initial RNAP-promoter complex. Strikingly, GreB-RNAP complexes never initiated at an rRNA promoter; only RNAP molecules arriving at the promoter without bound GreB produced transcript. The data reveal that a model SCF functions by a 'delayed inhibition' mechanism and suggest that rRNA promoters are inhibited by GreB/DksA because their short-lived RNAP complexes do not allow sufficient time for SCFs to dissociate.


Assuntos
Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Ribossômico/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Ribossômico/metabolismo , Fatores de Elongação da Transcrição/metabolismo
8.
Elife ; 82019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30618376

RESUMO

Transcriptional pausing underlies regulation of cellular RNA biogenesis. A consensus pause sequence that acts on RNA polymerases (RNAPs) from bacteria to mammals halts RNAP in an elemental paused state from which longer-lived pauses can arise. Although the structural foundations of pauses prolonged by backtracking or nascent RNA hairpins are recognized, the fundamental mechanism of the elemental pause is less well-defined. Here we report a mechanistic dissection that establishes the elemental pause signal (i) is multipartite; (ii) causes a modest conformational shift that puts γ-proteobacterial RNAP in an off-pathway state in which template base loading but not RNA translocation is inhibited; and (iii) allows RNAP to enter pretranslocated and one-base-pair backtracked states easily even though the half-translocated state observed in paused cryo-EM structures rate-limits pause escape. Our findings provide a mechanistic basis for the elemental pause and a framework to understand how pausing is modulated by sequence, cellular conditions, and regulators.


Assuntos
Transcrição Gênica , Pareamento de Bases/genética , Sequência de Bases , Sequência Consenso/genética , DNA/genética , Cinética , Mutação/genética , Nucleotídeos/metabolismo , RNA/genética , Moldes Genéticos , Elongação da Transcrição Genética
9.
Elife ; 72018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29480804

RESUMO

Fidaxomicin (Fdx) is an antimicrobial RNA polymerase (RNAP) inhibitor highly effective against Mycobacterium tuberculosis RNAP in vitro, but clinical use of Fdx is limited to treating Clostridium difficile intestinal infections due to poor absorption. To identify the structural determinants of Fdx binding to RNAP, we determined the 3.4 Å cryo-electron microscopy structure of a complete M. tuberculosis RNAP holoenzyme in complex with Fdx. We find that the actinobacteria general transcription factor RbpA contacts fidaxomycin, explaining its strong effect on M. tuberculosis. Additional structures define conformational states of M. tuberculosis RNAP between the free apo-holoenzyme and the promoter-engaged open complex ready for transcription. The results establish that Fdx acts like a doorstop to jam the enzyme in an open state, preventing the motions necessary to secure promoter DNA in the active site. Our results provide a structural platform to guide development of anti-tuberculosis antimicrobials based on the Fdx binding pocket.


Assuntos
Antibióticos Antituberculose/metabolismo , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , Inibidores Enzimáticos/metabolismo , Fidaxomicina/metabolismo , Mycobacterium tuberculosis/enzimologia , Antibióticos Antituberculose/química , Microscopia Crioeletrônica , Inibidores Enzimáticos/química , Fidaxomicina/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica
10.
Nat Commun ; 9(1): 944, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507289

RESUMO

Transcriptional riboswitches modulate downstream gene expression by a tight coupling of ligand-dependent RNA folding kinetics with the rate of transcription. RNA folding pathways leading to functional ON and OFF regulation involve the formation of metastable states within well-defined sequence intervals during transcription. The kinetic requirements for the formation and preservation of these metastable states in the context of transcription remain unresolved. Here, we reversibly trap the previously defined regulatory relevant metastable intermediate of the Mesoplasma florum 2'-deoxyguanosine (2'dG)-sensing riboswitch using a photocaging-ligation approach, and monitor folding to its native state by real-time NMR in both presence and absence of ligand. We further determine transcription rates for two different bacterial RNA polymerases. Our results reveal that the riboswitch functions only at transcription rates typical for bacterial polymerases (10-50 nt s-1) and that gene expression is modulated by 40-50% only, while subtle differences in folding rates guide population ratios within the structural ensemble to a specific regulatory outcome.


Assuntos
Riboswitch/genética , Transdução de Sinais/genética , Transcrição Gênica , Sequência de Bases , Simulação por Computador , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Genéticos , Conformação de Ácido Nucleico
11.
Elife ; 62017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28541183

RESUMO

In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Dobramento de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Riboswitch , Transcrição Gênica , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico
12.
J Mol Biol ; 391(2): 341-58, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19500594

RESUMO

NusG is a conserved regulatory protein that interacts with elongation complexes (ECs) of RNA polymerase, DNA, and RNA to modulate transcription in multiple and sometimes opposite ways. In Escherichia coli, NusG suppresses pausing and increases elongation rate, enhances termination by E. coli rho and phage HK022 Nun protein, and promotes antitermination by lambdaN and in ribosomal RNA operons. We report NMR studies that suggest that E. coli NusG consists of two largely independent N- and C-terminal structural domains, NTD and CTD, respectively. Based on tests of the functions of the NTD and CTD and variants of NusG in vivo and in vitro, we find that NTD alone is sufficient to suppress pausing and enhance transcript elongation in vitro. However, neither domain alone can enhance rho-dependent termination or support antitermination, indicating that interactions of both domains with ECs are required for these processes. We propose that the two domains of NusG mediate distinct interactions with ECs: the NTD interacts with RNA polymerase and the CTD interacts with rho and other regulators, providing NusG with different combinations of interactions to effect different regulatory outcomes.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Genes Dominantes , Genes Letais , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Conformação Proteica , Estrutura Terciária de Proteína/genética , Fator Rho/metabolismo , Regiões Terminadoras Genéticas , Fatores de Transcrição/química , Fatores de Transcrição/genética
13.
Mol Cell ; 20(3): 335-45, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16285916

RESUMO

In bacteria, a fundamental level of gene regulation occurs by competitive association of promoter-specificity factors called sigmas with RNA polymerase (RNAP). This sigma cycle paradigm underpins much of our understanding of all transcriptional regulation. Here, we review recent challenges to the sigma cycle paradigm in the context of its essential features and of the structural basis of sigma interactions with RNAP and elongation complexes. Although sigmas can play dual roles as both initiation and elongation regulators, we suggest that the key postulate of the sigma cycle, that sigmas compete for binding to RNAP after each round of RNA synthesis, remains the central mechanism for programming transcription initiation in bacteria.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fator sigma/metabolismo , Transcrição Gênica/fisiologia , Bactérias/genética , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Fator sigma/genética
14.
Genes Dev ; 17(22): 2839-51, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14630944

RESUMO

Bacterial sigma factors compete for binding to RNA polymerase (RNAP) to control promoter selection, and in some cases interact with RNAP to regulate at least the early stages of transcript elongation. However, the effective concentration of sigmas in vivo, and the extent to which sigma can regulate transcript elongation generally, are unknown. We report that tethering sigma70 to all RNAP molecules via genetic fusion of rpoD to rpoC (encoding sigma70 and RNAP's beta' subunit, respectively) yields viable Escherichia coli strains in which alternative sigma-factor function is not impaired. beta'::sigma70 RNAP transcribed DNA normally in vitro, but allowed sigma70-dependent pausing at extended -10-like sequences anywhere in a transcriptional unit. Based on measurement of the effective concentration of tethered sigma70, we conclude that the effective concentration of sigma70 in E. coli (i.e., its thermodynamic activity) is close to its bulk concentration. At this level, sigma70 would be a bona fide elongation factor able to direct transcriptional pausing even after its release from RNAP during promoter escape.


Assuntos
Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Fator sigma/genética , Transcrição Gênica , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Temperatura Alta , Ligação Proteica , Fator sigma/metabolismo
15.
Genes Dev ; 17(10): 1281-92, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12756229

RESUMO

Bacteriophage lambda Q-protein stably binds and modifies RNA polymerase (RNAP) to a termination-resistant form. We describe amino acid substitutions in RNAP that disrupt Q-mediated antitermination in vivo and in vitro. The positions of these substitutions in the modeled RNAP/DNA/RNA ternary elongation complex, and their biochemical properties, suggest that they do not define a binding site for Q in RNAP, but instead act by impairing interactions among core RNAP subunits and nucleic acids that are essential for Q modification. A specific conjecture is that Q modification stabilizes interactions of RNAP with the DNA/RNA hybrid and optimizes alignment of the nucleic acids in the catalytic site. Such changes would inhibit the activity of the RNA hairpin of an intrinsic terminator to disrupt the 5'-terminal bases of the hybrid and remove the RNA 3' terminus from the active site.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Transcrição Gênica/fisiologia , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa