Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Genome Res ; 34(2): 286-299, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479835

RESUMO

Genetic diversity is critical to crop breeding and improvement, and dissection of the genomic variation underlying agronomic traits can both assist breeding and give insight into basic biological mechanisms. Although recent genome analyses in plants reveal many structural variants (SVs), most current studies of crop genetic variation are dominated by single-nucleotide polymorphisms (SNPs). The extent of the impact of SVs on global trait variation, as well as their utility in genome-wide selection, is not yet understood. In this study, we built an SV data set based on whole-genome resequencing of diverse sorghum lines (n = 363), validated the correlation of photoperiod sensitivity and variety type, and identified SV hotspots underlying the divergent evolution of cellulosic and sweet sorghum. In addition, we showed the complementary contribution of SVs for heritability of traits related to sorghum adaptation. Importantly, inclusion of SV polymorphisms in association studies revealed genotype-phenotype associations not observed with SNPs alone. Three-way genome-wide association studies (GWAS) based on whole-genome SNP, SV, and integrated SNP + SV data sets showed substantial associations between SVs and sorghum traits. The addition of SVs to GWAS substantially increased heritability estimates for some traits, indicating their important contribution to functional allelic variation at the genome level. Our discovery of the widespread impacts of SVs on heritable gene expression variation could render a plausible mechanism for their disproportionate impact on phenotypic variation. This study expands our knowledge of SVs and emphasizes the extensive impacts of SVs on sorghum.


Assuntos
Variação Genética , Sorghum , Sorghum/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Polimorfismo de Nucleotídeo Único
2.
Plant Biotechnol J ; 17(12): 2272-2285, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31033139

RESUMO

Functional stay-green is a valuable trait that extends the photosynthetic period, increases source capacity and biomass and ultimately translates to higher grain yield. Selection for higher yields has increased stay-green in modern maize hybrids. Here, we report a novel QTL controlling functional stay-green that was discovered in a mapping population derived from the Illinois High Protein 1 (IHP1) and Illinois Low Protein 1 (ILP1) lines, which show very different rates of leaf senescence. This QTL was mapped to a single gene containing a NAC-domain transcription factor that we named nac7. Transgenic maize lines where nac7 was down-regulated by RNAi showed delayed senescence and increased both biomass and nitrogen accumulation in vegetative tissues, demonstrating NAC7 functions as a negative regulator of the stay-green trait. More importantly, crosses between nac7 RNAi parents and two different elite inbred testers produced hybrids with prolonged stay-green and increased grain yield by an average 0.29 megagram/hectare (4.6 bushel/acre), in 2 years of multi-environment field trials. Subsequent RNAseq experiments, one employing nac7 RNAi leaves and the other using leaf protoplasts overexpressing Nac7, revealed an important role for NAC7 in regulating genes in photosynthesis, chlorophyll degradation and protein turnover pathways that each contribute to the functional stay-green phenotype. We further determined the putative target of NAC7 and provided a logical extension for the role of NAC7 in regulating resource allocation from vegetative source to reproductive sink tissues. Collectively, our findings make a compelling case for NAC7 as a target for improving functional stay-green and yields in maize and other crops.


Assuntos
Fotossíntese , Locos de Características Quantitativas , Fatores de Transcrição/genética , Zea mays/genética , Biomassa , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Nitrogênio , Folhas de Planta , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Zea mays/crescimento & desenvolvimento
3.
BMC Plant Biol ; 15: 168, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26139102

RESUMO

BACKGROUND: Gene expression inheritance patterns in Arabidopsis hybrid plants were investigated for correlation with the presence of transposable elements (TEs) and small RNA profile. RESULTS: The presence of TEs in a gene and the expression of small RNA matching a gene were both found to be associated with non-additive mRNA inheritance patterns in hybrids. Expression levels below mid-parent values in the hybrids were associated with low mRNA expression in parents, with the presence of small RNA from both strands, and with the presence of TEs. High-parent dominance of mRNA levels was found to be associated with high parental mRNA expression levels, the absence of TEs, and for some genes, with small RNA fragments that are predominantly from the sense strand. These small RNAs exhibit a broader size distribution than siRNA and reduced nucleotide end bias, which are consistent with an origin from degraded mRNA. Thus, increased as well as decreased gene expression in hybrids relative to the parental mean is associated with gene expression levels, TE presence and small RNA fragments with differing characteristics. CONCLUSIONS: The data presented here is consistent with a role for differential mRNA decay kinetics as one mechanism contributing to high-parent dominance in gene expression. Our evidence is also consistent with trans repression by siRNA and TEs as the cause of low-parent dominance.


Assuntos
Arabidopsis/genética , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas , RNA Mensageiro/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Arabidopsis/metabolismo , Hibridização Genética , Padrões de Herança , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo
4.
Proc Natl Acad Sci U S A ; 109(26): 10444-9, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22689990

RESUMO

Small RNAs (sRNAs) are hypothesized to contribute to hybrid vigor because they maintain genome integrity, contribute to genetic diversity, and control gene expression. We used Illumina sequencing to assess how sRNA populations vary between two maize inbred lines (B73 and Mo17) and their hybrid. We sampled sRNAs from the seedling shoot apex and the developing ear, two rapidly growing tissues that program the greater growth of maize hybrids. We found that parental differences in siRNAs primarily originate from repeat regions. Although the maize genome contains greater number and complexity of repeats compared with Arabidopsis or rice, we confirmed that, like these simpler plant genomes, 24-nt siRNAs whose abundance differs between maize parents also show a trend of down-regulation following hybridization. Surprisingly, hybrid vigor is fully maintained when 24-nt siRNAs are globally reduced by mutation of the RNA-dependent RNA polymerase 2 encoded by modifier of paramutation1 (mop1). We also discovered that 21-22-nt siRNAs derived from a number of distinct retrotransposon families differentially accumulate between B73 and Mo17 as well as their hybrid. Thus, maize possesses a unique source of genetic variation for regulating transposons and genes at a genomic scale, which may contribute to its high degree of observed heterosis.


Assuntos
Hibridização Genética , RNA de Plantas/genética , Zea mays/genética , Vigor Híbrido , RNA Interferente Pequeno , Retroelementos
5.
J Exp Bot ; 65(13): 3737-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24958895

RESUMO

Miscanthus × giganteus is exceptional among C4 plants in its ability to acclimate to chilling (≤14 °C) and maintain a high photosynthetic capacity, in sharp contrast to maize, leading to very high productivity even in cool temperate climates. To identify the mechanisms that underlie this acclimation, RNA was isolated from M × giganteus leaves in chilling and nonchilling conditions and hybridized to microarrays developed for its close relative Zea mays. Among 21 000 array probes that yielded robust signals, 723 showed significant expression change under chilling. Approximately half of these were for annotated genes. Thirty genes associated with chloroplast membrane function were all upregulated. Increases in transcripts for the lhcb5 (chlorophyll a/b-binding protein CP26), ndhF (NADH dehydrogenase F, chloroplast), atpA (ATP synthase alpha subunit), psbA (D1), petA (cytochrome f), and lhcb4 (chlorophyll a/b-binding protein CP29), relative to housekeeping genes in M. × giganteus, were confirmed by quantitative reverse-transcription PCR. In contrast, psbo1, lhcb5, psbA, and lhcb4 were all significantly decreased in Z. mays after 14 days of chilling. Western blot analysis of the D1 protein and LHCII type II chlorophyll a/b-binding protein also showed significant increases in M. × giganteus during chilling and significant decreases in Z. mays. Compared to other C4 species, M. × giganteus grown in chilling conditions appears to counteract the loss of photosynthetic proteins and proteins protecting photosystem II typically observed in other species by increasing mRNA levels for their synthesis.


Assuntos
Adaptação Fisiológica , Dióxido de Carbono/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Poaceae/genética , Proteínas de Ligação à Clorofila/genética , Proteínas de Ligação à Clorofila/metabolismo , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Luz , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Poaceae/fisiologia , Poaceae/efeitos da radiação , RNA de Plantas/genética , Zea mays/genética , Zea mays/fisiologia
6.
BMC Genomics ; 14: 864, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24320546

RESUMO

BACKGROUND: The Miscanthus genus of perennial C4 grasses contains promising biofuel crops for temperate climates. However, few genomic resources exist for Miscanthus, which limits understanding of its interesting biology and future genetic improvement. A comprehensive catalog of expressed sequences were generated from a variety of Miscanthus species and tissue types, with an emphasis on characterizing gene expression changes in spring compared to fall rhizomes. RESULTS: Illumina short read sequencing technology was used to produce transcriptome sequences from different tissues and organs during distinct developmental stages for multiple Miscanthus species, including Miscanthus sinensis, Miscanthus sacchariflorus, and their interspecific hybrid Miscanthus × giganteus. More than fifty billion base-pairs of Miscanthus transcript sequence were produced. Overall, 26,230 Sorghum gene models (i.e., ~ 96% of predicted Sorghum genes) had at least five Miscanthus reads mapped to them, suggesting that a large portion of the Miscanthus transcriptome is represented in this dataset. The Miscanthus × giganteus data was used to identify genes preferentially expressed in a single tissue, such as the spring rhizome, using Sorghum bicolor as a reference. Quantitative real-time PCR was used to verify examples of preferential expression predicted via RNA-Seq. Contiguous consensus transcript sequences were assembled for each species and annotated using InterProScan. Sequences from the assembled transcriptome were used to amplify genomic segments from a doubled haploid Miscanthus sinensis and from Miscanthus × giganteus to further disentangle the allelic and paralogous variations in genes. CONCLUSIONS: This large expressed sequence tag collection creates a valuable resource for the study of Miscanthus biology by providing detailed gene sequence information and tissue preferred expression patterns. We have successfully generated a database of transcriptome assemblies and demonstrated its use in the study of genes of interest. Analysis of gene expression profiles revealed biological pathways that exhibit altered regulation in spring compared to fall rhizomes, which are consistent with their different physiological functions. The expression profiles of the subterranean rhizome provides a better understanding of the biological activities of the underground stem structures that are essentials for perenniality and the storage or remobilization of carbon and nutrient resources.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Poaceae/genética , Rejuvenescimento , Rizoma/genética , Transcriptoma , Análise por Conglomerados , Evolução Molecular , Interação Gene-Ambiente , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Poaceae/classificação , Reprodutibilidade dos Testes , Estações do Ano
7.
Front Plant Sci ; 14: 1260005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288407

RESUMO

A central goal of biology is to understand how genetic variation produces phenotypic variation, which has been described as a genotype to phenotype (G to P) map. The plant form is continuously shaped by intrinsic developmental and extrinsic environmental inputs, and therefore plant phenomes are highly multivariate and require comprehensive approaches to fully quantify. Yet a common assumption in plant phenotyping efforts is that a few pre-selected measurements can adequately describe the relevant phenome space. Our poor understanding of the genetic basis of root system architecture is at least partially a result of this incongruence. Root systems are complex 3D structures that are most often studied as 2D representations measured with relatively simple univariate traits. In prior work, we showed that persistent homology, a topological data analysis method that does not pre-suppose the salient features of the data, could expand the phenotypic trait space and identify new G to P relations from a commonly used 2D root phenotyping platform. Here we extend the work to entire 3D root system architectures of maize seedlings from a mapping population that was designed to understand the genetic basis of maize-nitrogen relations. Using a panel of 84 univariate traits, persistent homology methods developed for 3D branching, and multivariate vectors of the collective trait space, we found that each method captures distinct information about root system variation as evidenced by the majority of non-overlapping QTL, and hence that root phenotypic trait space is not easily exhausted. The work offers a data-driven method for assessing 3D root structure and highlights the importance of non-canonical phenotypes for more accurate representations of the G to P map.

8.
BMC Genomics ; 13: 142, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22524439

RESUMO

BACKGROUND: Miscanthus (subtribe Saccharinae, tribe Andropogoneae, family Poaceae) is a genus of temperate perennial C4 grasses whose high biomass production makes it, along with its close relatives sugarcane and sorghum, attractive as a biofuel feedstock. The base chromosome number of Miscanthus (x = 19) is different from that of other Saccharinae and approximately twice that of the related Sorghum bicolor (x = 10), suggesting large-scale duplications may have occurred in recent ancestors of Miscanthus. Owing to the complexity of the Miscanthus genome and the complications of self-incompatibility, a complete genetic map with a high density of markers has not yet been developed. RESULTS: We used deep transcriptome sequencing (RNAseq) from two M. sinensis accessions to define 1536 single nucleotide variants (SNVs) for a GoldenGate™ genotyping array, and found that simple sequence repeat (SSR) markers defined in sugarcane are often informative in M. sinensis. A total of 658 SNP and 210 SSR markers were validated via segregation in a full sibling F1 mapping population. Using 221 progeny from this mapping population, we constructed a genetic map for M. sinensis that resolves into 19 linkage groups, the haploid chromosome number expected from cytological evidence. Comparative genomic analysis documents a genome-wide duplication in Miscanthus relative to Sorghum bicolor, with subsequent insertional fusion of a pair of chromosomes. The utility of the map is confirmed by the identification of two paralogous C4-pyruvate, phosphate dikinase (C4-PPDK) loci in Miscanthus, at positions syntenic to the single orthologous gene in Sorghum. CONCLUSIONS: The genus Miscanthus experienced an ancestral tetraploidy and chromosome fusion prior to its diversification, but after its divergence from the closely related sugarcane clade. The recent timing of this tetraploidy complicates discovery and mapping of genetic markers for Miscanthus species, since alleles and fixed differences between paralogs are comparable. These difficulties can be overcome by careful analysis of segregation patterns in a mapping population and genotyping of doubled haploids. The genetic map for Miscanthus will be useful in biological discovery and breeding efforts to improve this emerging biofuel crop, and also provide a valuable resource for understanding genomic responses to tetraploidy and chromosome fusion.


Assuntos
Mapeamento Cromossômico/métodos , Perfilação da Expressão Gênica , Poaceae/genética , Tetraploidia , Alelos , Biomassa , Cruzamento , Duplicação Cromossômica/genética , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Loci Gênicos/genética , Marcadores Genéticos/genética , Genômica , Técnicas de Genotipagem , Haploidia , Repetições de Microssatélites/genética , Poaceae/citologia , Poaceae/enzimologia , Polimorfismo de Nucleotídeo Único/genética , Piruvato Ortofosfato Diquinase/genética , Homologia de Sequência do Ácido Nucleico , Sorghum/genética , Sintenia/genética
9.
Genome Biol ; 23(1): 53, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139883

RESUMO

BACKGROUND: Hybridization and backcrossing are commonly used in animal and plant breeding to induce heritable variation including epigenetic changes such as paramutation. However, the molecular basis for hybrid-induced epigenetic memory remains elusive. RESULTS: Here, we report that hybridization between the inbred parents B73 and Mo17 induces trans-acting hypermethylation and hypomethylation at thousands of loci; several hundreds (~ 3%) are transmitted through six backcrossing and three selfing generations. Notably, many transgenerational methylation patterns resemble epialleles of the nonrecurrent parent, despite > 99% of overall genomic loci are converted to the recurrent parent. These epialleles depend on 24-nt siRNAs, which are eliminated in the isogenic hybrid Mo17xB73:mop1-1 that is defective in siRNA biogenesis. This phenomenon resembles paramutation-like events and occurs in both intraspecific (Mo17xB73) and interspecific (W22xTeosinte) hybrid maize populations. Moreover, siRNA abundance and methylation levels of these epialleles can affect expression of their associated epigenes, many of which are related to stress responses. CONCLUSION: Divergent siRNAs between the hybridizing parents can induce trans-acting epialleles in the hybrids, while the induced epigenetic status is maintained for transgenerational inheritance during backcross and hybrid breeding, which alters epigene expression to enhance growth and adaptation. These genetic and epigenetic principles may apply broadly from plants to animals.


Assuntos
Melhoramento Vegetal , Zea mays , Animais , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Padrões de Herança , Zea mays/genética
10.
Biotechnol Biofuels Bioprod ; 15(1): 148, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36578060

RESUMO

BACKGROUND: Miscanthus, a C4 member of Poaceae, is a promising perennial crop for bioenergy, renewable bioproducts, and carbon sequestration. Species of interest include nothospecies M. x giganteus and its parental species M. sacchariflorus and M. sinensis. Use of biotechnology-based procedures to genetically improve Miscanthus, to date, have only included plant transformation procedures for introduction of exogenous genes into the host genome at random, non-targeted sites. RESULTS: We developed gene editing procedures for Miscanthus using CRISPR/Cas9 that enabled the mutation of a specific (targeted) endogenous gene to knock out its function. Classified as paleo-allopolyploids (duplicated ancient Sorghum-like DNA plus chromosome fusion event), design of guide RNAs (gRNAs) for Miscanthus needed to target both homeologs and their alleles to account for functional redundancy. Prior research in Zea mays demonstrated that editing the lemon white1 (lw1) gene, involved in chlorophyll and carotenoid biosynthesis, via CRISPR/Cas9 yielded pale green/yellow, striped or white leaf phenotypes making lw1 a promising target for visual confirmation of editing in other species. Using sequence information from both Miscanthus and sorghum, orthologs of maize lw1 were identified; a multi-step screening approach was used to select three gRNAs that could target homeologs of lw1. Embryogenic calli of M. sacchariflorus, M. sinensis and M. x giganteus were transformed via particle bombardment (biolistics) or Agrobacterium tumefaciens introducing the Cas9 gene and three gRNAs to edit lw1. Leaves on edited Miscanthus plants displayed the same phenotypes noted in maize. Sanger sequencing confirmed editing; deletions in lw1 ranged from 1 to 26 bp in length, and one deletion (433 bp) encompassed two target sites. Confocal microscopy verified lack of autofluorescence (chlorophyll) in edited leaves/sectors. CONCLUSIONS: We developed procedures for gene editing via CRISPR/Cas9 in Miscanthus and, to the best of our knowledge, are the first to do so. This included five genotypes representing three Miscanthus species. Designed gRNAs targeted all copies of lw1 (homeologous copies and their alleles); results also confirmed lw1 made a good editing target in species other than Z. mays. The ability to target specific loci to enable endogenous gene editing presents a new avenue for genetic improvement of this important biomass crop.

11.
Nat Commun ; 12(1): 5627, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561450

RESUMO

Inferring phenotypic outcomes from genomic features is both a promise and challenge for systems biology. Using gene expression data to predict phenotypic outcomes, and functionally validating the genes with predictive powers are two challenges we address in this study. We applied an evolutionarily informed machine learning approach to predict phenotypes based on transcriptome responses shared both within and across species. Specifically, we exploited the phenotypic diversity in nitrogen use efficiency and evolutionarily conserved transcriptome responses to nitrogen treatments across Arabidopsis accessions and maize varieties. We demonstrate that using evolutionarily conserved nitrogen responsive genes is a biologically principled approach to reduce the feature dimensionality in machine learning that ultimately improved the predictive power of our gene-to-trait models. Further, we functionally validated seven candidate transcription factors with predictive power for NUE outcomes in Arabidopsis and one in maize. Moreover, application of our evolutionarily informed pipeline to other species including rice and mice models underscores its potential to uncover genes affecting any physiological or clinical traits of interest across biology, agriculture, or medicine.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Aprendizado de Máquina , Transcriptoma/genética , Zea mays/genética , Evolução Molecular , Variação Genética , Genoma de Planta/genética , Genômica/métodos , Genótipo , Modelos Genéticos , Nitrogênio/metabolismo , Fenótipo , Especificidade da Espécie
12.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585867

RESUMO

High-dimensional and high-throughput genomic, field performance, and environmental data are becoming increasingly available to crop breeding programs, and their integration can facilitate genomic prediction within and across environments and provide insights into the genetic architecture of complex traits and the nature of genotype-by-environment interactions. To partition trait variation into additive and dominance (main effect) genetic and corresponding genetic-by-environment variances, and to identify specific environmental factors that influence genotype-by-environment interactions, we curated and analyzed genotypic and phenotypic data on 1918 maize (Zea mays L.) hybrids and environmental data from 65 testing environments. For grain yield, dominance variance was similar in magnitude to additive variance, and genetic-by-environment variances were more important than genetic main effect variances. Models involving both additive and dominance relationships best fit the data and modeling unique genetic covariances among all environments provided the best characterization of the genotype-by-environment interaction patterns. Similarity of relative hybrid performance among environments was modeled as a function of underlying weather variables, permitting identification of weather covariates driving correlations of genetic effects across environments. The resulting models can be used for genomic prediction of mean hybrid performance across populations of environments tested or for environment-specific predictions. These results can also guide efforts to incorporate high-throughput environmental data into genomic prediction models and predict values in new environments characterized with the same environmental characteristics.


Assuntos
Interação Gene-Ambiente , Zea mays , Genótipo , Modelos Genéticos , Fenótipo , Melhoramento Vegetal
13.
BMC Genomics ; 11: 261, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20416060

RESUMO

BACKGROUND: Sugarcane (Saccharum spp.) has become an increasingly important crop for its leading role in biofuel production. The high sugar content species S. officinarum is an octoploid without known diploid or tetraploid progenitors. Commercial sugarcane cultivars are hybrids between S. officinarum and wild species S. spontaneum with ploidy at approximately 12x. The complex autopolyploid sugarcane genome has not been characterized at the DNA sequence level. RESULTS: The microsynteny between sugarcane and sorghum was assessed by comparing 454 pyrosequences of 20 sugarcane bacterial artificial chromosomes (BACs) with sorghum sequences. These 20 BACs were selected by hybridization of 1961 single copy sorghum overgo probes to the sugarcane BAC library with one sugarcane BAC corresponding to each of the 20 sorghum chromosome arms. The genic regions of the sugarcane BACs shared an average of 95.2% sequence identity with sorghum, and the sorghum genome was used as a template to order sequence contigs covering 78.2% of the 20 BAC sequences. About 53.1% of the sugarcane BAC sequences are aligned with sorghum sequence. The unaligned regions contain non-coding and repetitive sequences. Within the aligned sequences, 209 genes were annotated in sugarcane and 202 in sorghum. Seventeen genes appeared to be sugarcane-specific and all validated by sugarcane ESTs, while 12 appeared sorghum-specific but only one validated by sorghum ESTs. Twelve of the 17 sugarcane-specific genes have no match in the non-redundant protein database in GenBank, perhaps encoding proteins for sugarcane-specific processes. The sorghum orthologous regions appeared to have expanded relative to sugarcane, mostly by the increase of retrotransposons. CONCLUSIONS: The sugarcane and sorghum genomes are mostly collinear in the genic regions, and the sorghum genome can be used as a template for assembling much of the genic DNA of the autopolyploid sugarcane genome. The comparable gene density between sugarcane BACs and corresponding sorghum sequences defied the notion that polyploidy species might have faster pace of gene loss due to the redundancy of multiple alleles at each locus.


Assuntos
Diploide , Genoma de Planta/genética , Poliploidia , Saccharum/genética , Sorghum/genética , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Estudos de Viabilidade , Genes de Plantas/genética , Sequências Repetitivas de Ácido Nucleico , Reprodutibilidade dos Testes , Saccharum/citologia , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Sorghum/citologia
14.
Front Genet ; 11: 592769, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33763106

RESUMO

Genomic prediction provides an efficient alternative to conventional phenotypic selection for developing improved cultivars with desirable characteristics. New and improved methods to genomic prediction are continually being developed that attempt to deal with the integration of data types beyond genomic information. Modern automated weather systems offer the opportunity to capture continuous data on a range of environmental parameters at specific field locations. In principle, this information could characterize training and target environments and enhance predictive ability by incorporating weather characteristics as part of the genotype-by-environment (G×E) interaction component in prediction models. We assessed the usefulness of including weather data variables in genomic prediction models using a naïve environmental kinship model across 30 environments comprising the Genomes to Fields (G2F) initiative in 2014 and 2015. Specifically four different prediction scenarios were evaluated (i) tested genotypes in observed environments; (ii) untested genotypes in observed environments; (iii) tested genotypes in unobserved environments; and (iv) untested genotypes in unobserved environments. A set of 1,481 unique hybrids were evaluated for grain yield. Evaluations were conducted using five different models including main effect of environments; general combining ability (GCA) effects of the maternal and paternal parents modeled using the genomic relationship matrix; specific combining ability (SCA) effects between maternal and paternal parents; interactions between genetic (GCA and SCA) effects and environmental effects; and finally interactions between the genetics effects and environmental covariates. Incorporation of the genotype-by-environment interaction term improved predictive ability across all scenarios. However, predictive ability was not improved through inclusion of naive environmental covariates in G×E models. More research should be conducted to link the observed weather conditions with important physiological aspects in plant development to improve predictive ability through the inclusion of weather data.

15.
Nat Commun ; 11(1): 5442, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116128

RESUMO

Miscanthus is a perennial wild grass that is of global importance for paper production, roofing, horticultural plantings, and an emerging highly productive temperate biomass crop. We report a chromosome-scale assembly of the paleotetraploid M. sinensis genome, providing a resource for Miscanthus that links its chromosomes to the related diploid Sorghum and complex polyploid sugarcanes. The asymmetric distribution of transposons across the two homoeologous subgenomes proves Miscanthus paleo-allotetraploidy and identifies several balanced reciprocal homoeologous exchanges. Analysis of M. sinensis and M. sacchariflorus populations demonstrates extensive interspecific admixture and hybridization, and documents the origin of the highly productive triploid bioenergy crop M. × giganteus. Transcriptional profiling of leaves, stem, and rhizomes over growing seasons provides insight into rhizome development and nutrient recycling, processes critical for sustainable biomass accumulation in a perennial temperate grass. The Miscanthus genome expands the power of comparative genomics to understand traits of importance to Andropogoneae grasses.


Assuntos
Poaceae/genética , Biomassa , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis , Diploide , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta , Genômica , Modelos Genéticos , Filogenia , Poaceae/classificação , Poaceae/crescimento & desenvolvimento , Poliploidia , Saccharum/genética , Estações do Ano , Sorghum/genética
16.
BMC Res Notes ; 13(1): 71, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051026

RESUMO

OBJECTIVES: Advanced tools and resources are needed to efficiently and sustainably produce food for an increasing world population in the context of variable environmental conditions. The maize genomes to fields (G2F) initiative is a multi-institutional initiative effort that seeks to approach this challenge by developing a flexible and distributed infrastructure addressing emerging problems. G2F has generated large-scale phenotypic, genotypic, and environmental datasets using publicly available inbred lines and hybrids evaluated through a network of collaborators that are part of the G2F's genotype-by-environment (G × E) project. This report covers the public release of datasets for 2014-2017. DATA DESCRIPTION: Datasets include inbred genotypic information; phenotypic, climatic, and soil measurements and metadata information for each testing location across years. For a subset of inbreds in 2014 and 2015, yield component phenotypes were quantified by image analysis. Data released are accompanied by README descriptions. For genotypic and phenotypic data, both raw data and a version without outliers are reported. For climatic data, a version calibrated to the nearest airport weather station and a version without outliers are reported. The 2014 and 2015 datasets are updated versions from the previously released files [1] while 2016 and 2017 datasets are newly available to the public.


Assuntos
Genoma de Planta/genética , Melhoramento Vegetal , Zea mays/genética , Conjuntos de Dados como Assunto , Genótipo , Fenótipo
17.
Front Plant Sci ; 10: 192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906302

RESUMO

Herbicide safeners protect cereal crops from herbicide injury by inducing genes and proteins involved in detoxification reactions, such as glutathione S-transferases (GSTs) and cytochrome P450s (P450s). Only a few studies have characterized gene or protein expression profiles for investigating plant responses to safener treatment in cereal crops, and most transcriptome analyses in response to safener treatments have been conducted in dicot model species that are not protected by safener from herbicide injury. In this study, three different approaches were utilized in grain sorghum (Sorghum bicolor (L.) Moench) to investigate mechanisms involved in safener-regulated signaling pathways. An initial transcriptome analysis was performed to examine global gene expression in etiolated shoot tissues of hybrid grain sorghum following treatment with the sorghum safener, fluxofenim. Most upregulated transcripts encoded detoxification enzymes, including P450s, GSTs, and UDP-dependent glucosyltransferases (UGTs). Interestingly, several of these upregulated transcripts are similar to genes involved with the biosynthesis and recycling/catabolism of dhurrin, an important chemical defense compound, in these seedling tissues. Secondly, 761 diverse sorghum inbred lines were evaluated in a genome-wide association study (GWAS) to determine key molecular-genetic factors governing safener-mediated signaling mechanisms and/or herbicide detoxification. GWAS revealed a significant single nucleotide polymorphism (SNP) associated with safener-induced response on chromosome 9, located within a phi-class SbGST gene and about 15-kb from a different phi-class SbGST. Lastly, the expression of these two candidate SbGSTs was quantified in etiolated shoot tissues of sorghum inbred BTx623 in response to fluxofenim treatment. SbGSTF1 and SbGSTF2 transcripts increased within 12-hr after fluxofenim treatment but the level of safener-induced expression differed between the two genes. In addition to identifying specific GSTs potentially involved in the safener-mediated detoxification pathway, this research elucidates a new direction for studying both constitutive and inducible mechanisms for chemical defense in cereal crop seedlings.

18.
J Exp Bot ; 59(7): 1779-87, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18503044

RESUMO

The previous investigations show that the amount and activity of Rubisco appears the major limitation to effective C(4) photosynthesis at low temperatures. The chilling-tolerant and bioenergy feedstock species Miscanthus x giganteus (M. x giganteus) is exceptionally productive among C(4) grasses in cold climates. It is able to develop photosynthetically active leaves at temperatures 6 degrees C below the minimum for maize, and achieves a productivity even at 52 degrees N that exceeds that of the most productive C(3) crops at this latitude. This study investigates whether this unusual low temperature tolerance can be attributed to differences in the amount or kinetic properties of Rubisco relative to maize. An efficient protocol was developed to purify large amounts of functional Rubisco from C(4) leaves. The maximum carboxylation activities (V(max)), activation states, catalytic rates per active site (K(cat)) and activation energies (E(a)) of purified Rubisco and Rubisco in crude leaf extracts were determined for M. x giganteus grown at 14 degrees C and 25 degrees C, and maize grown at 25 degrees C. The sequences of M. x giganteus Rubisco small subunit mRNA are highly conserved, and 91% identical to those of maize. Although there were a few differences between the species in the translated protein sequences, there were no significant differences in the catalytic properties (V(max), K(cat), and E(a)) for purified Rubisco, nor was there any effect of growth temperature in M. x giganteus on these kinetic properties. Extracted activities were close to the observed rates of CO(2) assimilation by the leaves in vivo. On a leaf area basis the extracted activities and activation state of Rubisco did not differ significantly, either between the two species or between growth temperatures. The activation state of Rubisco in leaf extracts showed no significant difference between warm and cold-grown M. x giganteus. In total, these results suggest that the ability of M. x giganteus to be productive and maintain photosynthetically competent leaves at low temperature does not result from low temperature acclimation or adaptation of the catalytic properties of Rubisco.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Fotossíntese/fisiologia , Poaceae/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , DNA Complementar/genética , DNA de Plantas/genética , Ativação Enzimática , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Fotossíntese/genética , Ribulose-Bifosfato Carboxilase/química
19.
BMC Res Notes ; 11(1): 452, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986751

RESUMO

OBJECTIVES: Crop improvement relies on analysis of phenotypic, genotypic, and environmental data. Given large, well-integrated, multi-year datasets, diverse queries can be made: Which lines perform best in hot, dry environments? Which alleles of specific genes are required for optimal performance in each environment? Such datasets also can be leveraged to predict cultivar performance, even in uncharacterized environments. The maize Genomes to Fields (G2F) Initiative is a multi-institutional organization of scientists working to generate and analyze such datasets from existing, publicly available inbred lines and hybrids. G2F's genotype by environment project has released 2014 and 2015 datasets to the public, with 2016 and 2017 collected and soon to be made available. DATA DESCRIPTION: Datasets include DNA sequences; traditional phenotype descriptions, as well as detailed ear, cob, and kernel phenotypes quantified by image analysis; weather station measurements; and soil characterizations by site. Data are released as comma separated value spreadsheets accompanied by extensive README text descriptions. For genotypic and phenotypic data, both raw data and a version with outliers removed are reported. For weather data, two versions are reported: a full dataset calibrated against nearby National Weather Service sites and a second calibrated set with outliers and apparent artifacts removed.


Assuntos
Conjuntos de Dados como Assunto , Genótipo , Fenótipo , Zea mays/genética , Meio Ambiente , Genoma de Planta , Endogamia , Melhoramento Vegetal , Estações do Ano , Análise de Sequência de DNA
20.
Trends Plant Sci ; 9(7): 358-64, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15231281

RESUMO

The Illinois Long-Term Selection Experiment for grain protein and oil concentration in maize (Zea mays) is the longest continuous genetics experiment in higher plants. A total of 103 cycles of selection have produced nine related populations that exhibit phenotypic extremes for grain composition and a host of correlated traits. The use of functional genomics tools in this unique genetic resource provides exciting opportunities not only to discover the genes that contribute to phenotypic differences but also to investigate issues such as the response of plant genomes to artificial selection, the genetic architecture of quantitative traits and the source of continued genetic variation within domesticated crop genomes.


Assuntos
Genoma de Planta , Sementes/genética , Zea mays/genética , Genômica/métodos , Genômica/tendências , Illinois , Fenótipo , Proteínas de Plantas/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa