Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617107

RESUMO

Photoacoustic tomography (PAT) is increasingly being used for high-resolution biological imaging at depth. Signal-to-noise ratios and resolution are the main factors that determine image quality. Various reconstruction algorithms have been proposed and applied to reduce noise and enhance resolution, but the efficacy of signal preprocessing methods which also affect image quality, are seldom discussed. We, therefore, compared common preprocessing techniques, namely bandpass filters, wavelet denoising, empirical mode decomposition, and singular value decomposition. Each was compared with and without accounting for sensor directivity. The denoising performance was evaluated with the contrast-to-noise ratio (CNR), and the resolution was calculated as the full width at half maximum (FWHM) in both the lateral and axial directions. In the phantom experiment, counting in directivity was found to significantly reduce noise, outperforming other methods. Irrespective of directivity, the best performing methods for denoising were bandpass, unfiltered, SVD, wavelet, and EMD, in that order. Only bandpass filtering consistently yielded improvements. Significant improvements in the lateral resolution were observed using directivity in two out of three acquisitions. This study investigated the advantages and disadvantages of different preprocessing methods and may help to determine better practices in PAT reconstruction.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Razão Sinal-Ruído , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
2.
Sensors (Basel) ; 22(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35808168

RESUMO

Atopic dermatitis (AD) is a common chronic inflammatory skin dermatosis condition due to skin barrier dysfunction that causes itchy, red, swollen, and cracked skin. Currently, AD severity clinical scores are subjected to intra- and inter-observer differences. There is a need for an objective scoring method that is sensitive to skin barrier differences. The aim of this study was to evaluate the relevant skin chemical biomarkers in AD patients. We used confocal Raman micro-spectroscopy and advanced machine learning methods as means to classify eczema patients and healthy controls with sufficient sensitivity and specificity. Raman spectra at different skin depths were acquired from subjects' lower volar forearm location using an in-house developed handheld confocal Raman micro-spectroscopy system. The Raman spectra corresponding to the skin surface from all the subjects were further analyzed through partial least squares discriminant analysis, a binary classification model allowing the classification between eczema and healthy subjects with a sensitivity and specificity of 0.94 and 0.85, respectively, using stratified K-fold (K = 10) cross-validation. The variable importance in the projection score from the partial least squares discriminant analysis classification model further elucidated the role of important stratum corneum proteins and lipids in distinguishing two subject groups.


Assuntos
Dermatite Atópica , Eczema , Biomarcadores/análise , Dermatite Atópica/diagnóstico por imagem , Eczema/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Pele/metabolismo , Análise Espectral Raman/métodos
3.
Appl Opt ; 57(17): 4865-4871, 2018 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30118104

RESUMO

Due to the embedded nature of the lamina cribrosa (LC) microcapillary network, conventional imaging techniques have failed to obtain the high-resolution images needed to assess the perfusion state of the LC. In this study, both optical resolution (OR) and acoustic resolution (AR) photoacoustic microscopy (PAM) techniques were used to obtain static and dynamic information about LC perfusion in ex vivo porcine eyes. The OR-PAM system could resolve a perfused LC microcapillary network with a lateral resolution of 4.2 µm and also provided good depth information (33 µm axial resolution) to visualize through-thickness vascular variations. The AR-PAM system was capable of detecting time-dependent perfusion variations. This study represents the first step towards using an emerging imaging modality (PAM) to study the LC's perfusion, which could be a basis for further investigation of the hemodynamic aspects of glaucomatous optic neuropathy.


Assuntos
Capilares/diagnóstico por imagem , Disco Óptico/irrigação sanguínea , Animais , Artérias Ciliares/fisiologia , Imageamento Tridimensional , Técnicas Fotoacústicas/métodos , Suínos
4.
Opt Express ; 25(9): 9647-9653, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468347

RESUMO

Photoinduced shrinkage occurring in photopolymer layers during holographic recording was determined by phase shifting electronic speckle pattern interferometry. Phase maps were calculated from the changes in intensity at each pixel due to the phase differences introduced between object and reference beams. Shrinkage was then obtained from the changes in phase as recording proceeded. The technique allows for whole field measurement of the dimensional changes in photopolymers during holographic recording.

5.
Sensors (Basel) ; 17(2)2017 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-28208676

RESUMO

Photoacoustic microscopy (PAM) is a scalable bioimaging modality; one can choose low acoustic resolution with deep penetration depth or high optical resolution with shallow imaging depth. High spatial resolution and deep penetration depth is rather difficult to achieve using a single system. Here we report a switchable acoustic resolution and optical resolution photoacoustic microscopy (AR-OR-PAM) system in a single imaging system capable of both high resolution and low resolution on the same sample. Lateral resolution of 4.2 µm (with ~1.4 mm imaging depth) and lateral resolution of 45 µm (with ~7.6 mm imaging depth) was successfully demonstrated using a switchable system. In vivo blood vasculature imaging was also performed for its biological application.

7.
Appl Opt ; 52(35): 8519-27, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24513896

RESUMO

Shrinkage of photopolymer materials is an important factor for their use in holographic data storage and for fabrication of holographic optical elements. Dimensional change in the holographic element leads to a requirement for compensation in the reading angle and/or wavelength. Normally, shrinkage is studied at the end of the polymerization process and no information about the dynamics is obtained. The aim of this study was to use holographic interferometry to measure the shrinkage that occurs during holographic recording of transmission diffraction gratings in acrylamide photopolymer layers. Shrinkage in photopolymer layers can be measured over the whole recorded area by real-time capture of holographic interferograms at regular intervals during holographic recording using a complimentary metal-oxide-semiconductor camera. The optical path length change, and hence the shrinkage, are determined from the captured fringe patterns. Through analysis of the real-time shrinkage curves, it is possible to distinguish two processes that determine the value of shrinkage in the photopolymer layer. These processes are ascribed to monomer polymerization and crosslinking of polymer chains. The dependence of shrinkage of the layers on the conditions of recording such as recording intensity, single or double beam exposure, and the physical properties of the layers, such as thickness, were studied. Higher shrinkage was observed with recordings at lower intensities and in thinner layers. Increased shrinkage was also observed in the case of single beam polymerization in comparison to the case of double beam holographic exposure.

8.
Sci Rep ; 12(1): 12459, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864143

RESUMO

Raman spectroscopy (RS) is a widely used non-destructive technique for biosensing applications because of its ability to detect unique 'fingerprint' spectra of biomolecules from the vibrational bands. To detect these weak fingerprint spectra, a complex detection system consisting of expensive detectors and optical components are needed. As a result, surface enhanced Raman spectroscopy (SERS) method were used to increase the Raman signal multifold beyond 1012 times. However, complexity of the entire Raman detection system can be greatly reduced if a short wavelength region/unique single spectral band can distinctly identify the investigating analyte, thereby reducing the need of multiple optical components to capture the entire frequency range of Raman spectra. Here we propose the development of a rapid, single peak Raman technique for the detection of epithelial ovarian cancers (EOC)s through haptoglobin (Hp), a prognostic biomarker. Hp concentration in ovarian cyst fluid (OCF) can be detected and quantified using Raman spectroscopy-based in vitro diagnostic assay. The uniqueness of the Raman assay is that, only in the presence of the analyte Hp, the assay reagent undergoes a biochemical reaction that results in product formation. The unique Raman signature of the assay output falls within the wavenumber region 1500-1700 cm-1 and can be detected using our single peak Raman system. The diagnostic performance of our Raman system had 100.0% sensitivity, 85.0% specificity, 100.0% negative predictive value and 84.2% positive predictive value when compared to gold standard paraffin histology in a proof-of-concept study on 36 clinical OCF samples. When compared to blood-based serum cancer antigen 125 (CA125) levels, the Raman system-based assay had higher diagnostic accuracy when compared to CA125, especially in early-stage EOCs.


Assuntos
Biomarcadores Tumorais , Neoplasias Ovarianas , Antígeno Ca-125 , Carcinoma Epitelial do Ovário , Feminino , Haptoglobinas , Humanos , Neoplasias Ovarianas/diagnóstico , Análise Espectral Raman/métodos
9.
Photoacoustics ; 27: 100377, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35769886

RESUMO

To date, studies which utilized ultrasound (US) and optoacoustic tomography (OT) fusion (US-OT) in biochemical differentiation of malignant and benign breast conditions have relied on limited biochemical data such as oxyhaemoglobin (OH) and deoxyhaemoglobin (DH) only. There has been no data of the largest biochemical components of breast fibroglandular tissue: lipid and collagen. Here, the authors believe the ability to image collagen and lipids within the breast tissue could serve as an important milestone in breast US-OT imaging with many potential downstream clinical applications. Hence, we would like to present the first-in-human US-OT demonstration of lipid and collagen differentiation in an excised breast tissue from a 38-year-old female.

10.
Photoacoustics ; 28: 100399, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36090012

RESUMO

Atopic dermatitis (AD) is a chronic and pruritic skin inflammatory disease causing a significant burden to health care management and patient's quality of life. Seemingly healthy skin or non-lesional sites on AD patients still presents skin barrier defects and immune response, which can develop to AD at a later stage. To investigate further the balance between the epidermal barrier impairment and intrinsic immune dysregulation in AD, we exploited multispectral Raster-Scanning Optoacoustic Mesoscopy (ms-RSOM) to image lesional and non-lesional skin areas on AD patients of different severities non-invasively to elucidate their structural features and functional information. Herein, we demonstrate the objective assessment of AD severity using relative changes in oxygen saturation (δsO2) levels in microvasculature along with other structural parameters such as relative changes in epidermis thickness (δET) and total blood volume (δTBV) between the lesional and non-lesional areas of the skin. We could observe an increasing trend for δsO2 and δTBV, which correlated well with the subjective clinical Scoring Atopic Dermatitis (SCORAD) for evaluating the severity. Notably, δET showed a decreasing trend with AD severity, indicating that the difference in epidermal thickness between lesional and non-lesional area of the skin decreases with AD severity. Our results also correlated well with conventional metrics such as trans-epidermal water loss (TEWL) and erythrosine sedimentation rate (ESR). We quantified the δsO2 and δET changes to objectively evaluate the treatment response before and four months after treatment using topical steroids and cyclosporine in one severe AD patient. We observed reduced δsO2 and δET post treatment. We envision that in future, functional and structural imaging metrics derived from ms-RSOM can be translated as objective markers to assess and stratify the severity of AD and understand the function of skin barrier dysfunctions and immune dysregulation. It could also be employed to monitor the treatment response of AD in regular clinical settings.

11.
Opt Express ; 19(25): 25786-91, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22273971

RESUMO

An acrylamide based photopolymer doped with pure silica MFI-type zeolite (silicalite-1) nanoparticles has been characterized for holographic recording purposes. The concentrations of the silicalite-1 nanoparticles in the photopolymer layers were 1, 2.5, 5 and 7.5 wt. %. The inclusion of silicalite-1 nanoparticle in the photopolymer has resulted in an increase of the diffraction efficiency by up to 40%, and decrease of the shrinkage from 1.32% to 0.57%. The best results were obtained in layers doped with 5 wt. % silicalite-1 nanoparticles.


Assuntos
Acrilamidas/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Refratometria/métodos , Zeolitas/química , Acrilamidas/efeitos da radiação , Luz , Teste de Materiais , Tamanho da Partícula
12.
Opt Express ; 19(14): 13395-404, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747495

RESUMO

We study the shrinkage in acrylamide based photopolymer by measuring the Bragg detuning of transmission diffraction gratings recorded at different slant angles and at different intensities for a range of spatial frequencies. Transmission diffraction gratings of spatial frequencies 500, 1000, 1500 and 2000 lines/mm were recorded in an acrylamide based photopolymer film having 60 ± 5 µm thickness. The grating thickness and the final slant angles were obtained from the angular Bragg selectivity curve and hence the shrinkage caused by holographic recording was calculated. The shrinkage of the material was evaluated for three different recording intensities 1, 5 and 10 mW/cm2 over a range of slant angles, while the total exposure energy was kept constant at 80 mJ/cm2. From the experimental results it can be seen that the shrinkage of the material is lower for recording with higher intensities and at lower spatial frequencies.


Assuntos
Acrilamida/química , Acrilamida/efeitos da radiação , Holografia/métodos , Teste de Materiais/métodos , Fotoquímica/métodos , Refratometria/métodos , Módulo de Elasticidade , Luz
13.
J Biophotonics ; 14(1): e202000280, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32951321

RESUMO

Breast conserving surgery (BCS) offering similar surgical outcomes as mastectomy while retaining breast cosmesis is becoming increasingly popular for the management of early stage breast cancers. However, its association with reoperation rates of 20% to 40% following incomplete tumor removal warrants the need for a fast and accurate intraoperative surgical margin assessment tool that offers cellular, structural and molecular information of the whole specimen surface to a clinically relevant depth. Biophotonic technologies are evolving to qualify as such an intraoperative tool for clinical assessment of breast cancer surgical margins at the microscopic and macroscopic scale. Herein, we review the current research in the application of biophotonic technologies such as photoacoustic imaging, Raman spectroscopy, multimodal multiphoton imaging, diffuse optical imaging and fluorescence imaging using medically approved dyes for breast cancer detection and/or tumor subtype differentiation toward intraoperative assessment of surgical margins in BCS specimens, and possible challenges in their route to clinical translation.


Assuntos
Neoplasias da Mama , Margens de Excisão , Mama , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Feminino , Humanos , Mastectomia , Mastectomia Segmentar
14.
Photoacoustics ; 22: 100268, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34026491

RESUMO

The ability to monitor oxygen delivery in microvasculature plays a vital role in measuring the viability of skin tissue and the probability of recovery. Using currently available clinical imaging tools, it is difficult to observe non-invasive hemodynamic regulation in the peripheral vessels. Here we propose the use of a novel multispectral raster-scanning optoacoustic mesoscopy (RSOM) system for noninvasive clinical monitoring of hemodynamic changes in the skin microvasculature's oxy- (HbO2) and deoxy-hemoglobin (Hb), total hemoglobin (HbT) and oxygen saturation (rsO2). High resolution images of hemoglobin distribution in the skin microvasculature from six healthy volunteers during venous and arterial occlusion, simulating systemic vascular diseases are presented. During venous occlusion, Hb and HbO2 optoacoustic signals showed an increasing trend with time, followed by a drop in the values after cuff deflation. During arterial occlusion, an increase in Hb value and decrease in HbO2 values was observed, followed by a drop in Hb and jump in HbO2 values after the cuff deflation. A decrease in rsO2 values during both venous and arterial occlusion was observed with an increase in value after occlusion release. Using this proof of concept study, hereby we propose multispectral RSOM as a novel tool to measure high resolution hemodynamic changes in microvasculature for investigating systemic vascular diseases on peripheral tissues and also for monitoring inflammatory skin diseases, and its therapeutic interventions.

15.
J Biophotonics ; 13(2): e201960127, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31682313

RESUMO

Photoacoustic microscopy (PAM) can be classified as optical resolution (OR)-PAM and acoustic resolution (AR)-PAM depending on the type of resolution achieved. Using microelectromechanical systems (MEMS) scanner, high-speed OR-PAM system was developed earlier. Depth of imaging limits the use of OR-PAM technology for many preclinical and clinical imaging applications. Here, we demonstrate the use of a high-speed MEMS scanner for AR-PAM imaging. Lateral resolution of 84 µm and an axial resolution of 27 µm with ~2.7 mm imaging depth was achieved using a 50 MHz transducer-based AR-PAM system. Use of a higher frequency transducer at 75 MHz has further improved the resolution characteristics of the system with a reduction in imaging depth and a lateral resolution of 53 µm and an axial resolution of 18 µm with ~1.8 mm imaging depth was achieved. Using the two-axis MEMS scanner a 2 × 2 .5 mm2 area was imaged in 3 seconds. The capability of achieving acoustic resolution images using the MEMS scanner makes it beneficial for the development of high-speed miniaturized systems for deeper tissue imaging.


Assuntos
Sistemas Microeletromecânicos , Técnicas Fotoacústicas , Acústica , Microscopia , Análise Espectral
16.
Photoacoustics ; 19: 100164, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32420026

RESUMO

In this pilot study, we tested an ultrasound-guided optoacoustic tomography (US-OT) two-dimensional (2D) array scanner to understand the optoacoustic patterns of excised breastconserving surgery (BCS) specimens. We imaged 14 BCS specimens containing malignant tumors at eight wavelengths spanning 700-1100 nm. Spectral unmixing across multiple wavelengths allowed for visualizing major intrinsic chromophores in the breast tissue including hemoglobin and lipid up to a depth of 7 mm. We identified less/no lipid signals within the tumor and intense deoxy-hemoglobin (Hb) signals on the rim of the tumor as unique characteristics of malignant tumors in comparison to no tumor region. We also observed continuous broad lipid signals as features of negative margins and compromised lipid signals interrupted by vasculature as features of positive margins. These differentiating patterns can form the basis of US-OT to be explored as an alternate, fast and efficient intraoperative method for evaluation of tumor resection margins.

17.
J Dermatol Sci ; 98(1): 20-25, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32063461

RESUMO

BACKGROUND: We developed the first-of-its-kind handheld confocal Raman spectroscopy (CRS) system to quantify the concentration of natural moisturizing factors in the skin. OBJECTIVE: To evaluate the feasibility of our handheld CRS system and propose a novel quantitative index to measure skin barrier function. METHODS: This prospective study included 30 atopic dermatitis (AD) patients and 14 healthy volunteers. All AD participants were assessed using the Scoring Atopic Dermatitis (SCORAD) severity instrument, a vapometer for trans-epidermal water loss and a moisture meter for skin surface moisture. A handheld CRS operating at 785 nm laser was used to measure the biochemical constituents of the skin up to a depth of ∼100 µm. We trained a linear kernel-based support vector machine (SVM) model for eczema classification based on the water, ceramide and urocanic acid content. A novel Eczema Biochemical Index (EBI) was then formulated using the skin constituents measured from the AD participants to stage disease severity. RESULTS: The SVM model used to classify healthy participants and AD patients obtained high cross-validated area under the curve of 0.857 and accuracy of 0.841, with high sensitivity and specificity values of 0.857 and 0.833 respectively. EBI can be used to stratify AD patients of varying severity, based on the biochemical constituents in the skin. CONCLUSION: As compared to the standard CRS system, the handheld CRS offers higher portability and provides Raman measurements at various body regions with similar sensitivity. This suggests that a handheld CRS device could be a valuable point-of-care resource in both research and clinical use.


Assuntos
Dermatite Atópica/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Análise Espectral Raman/instrumentação , Adulto , Estudos de Casos e Controles , Ceramidas/análise , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Epiderme/química , Epiderme/imunologia , Epiderme/patologia , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Masculino , Estudos Prospectivos , Curva ROC , Índice de Gravidade de Doença , Máquina de Vetores de Suporte , Ácido Urocânico/análise , Água/análise , Perda Insensível de Água/imunologia
18.
Transl Oncol ; 13(2): 254-261, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31869750

RESUMO

PURPOSE: To determine the accuracy of a handheld ultrasound-guided optoacoustic tomography (US-OT) probe developed for human deep-tissue imaging in ex vivo assessment of tumor margins postlumpectomy. METHODS: A custom-built two-dimensional (2D) US-OT-handheld probe was used to scan 15 lumpectomy breast specimens. Optoacoustic signals acquired at multiple wavelengths between 700 and 1100 nm were reconstructed using model linear algorithm, followed by spectral unmixing for lipid and deoxyhemoglobin (Hb). Distribution maps of lipid and Hb on the anterior, posterior, superior, inferior, medial, and lateral margins of the specimens were inspected for margin involvement, and results were correlated with histopathologic findings. The agreement in tumor margin assessment between US-OT and histopathology was determined using the Bland-Altman plot. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of margin assessment using US-OT were calculated. RESULTS: Ninety margins (6 × 15 specimens) were assessed. The US-OT probe resolved blood vessels and lipid up to a depth of 6 mm. Negative and positive margins were discriminated by marked differences in the distribution patterns of lipid and Hb. US-OT assessments were concordant with histopathologic findings in 87 of 89 margins assessed (one margin was uninterpretable and excluded), with diagnostic accuracy of 97.9% (kappa = 0.79). The sensitivity, specificity, PPV, and NPV were 100% (4/4), 97.6% (83/85), 66.7% (4/6), and 100% (83/83), respectively. CONCLUSION: US-OT was capable of providing distribution maps of lipid and Hb in lumpectomy specimens that predicted tumor margins with high sensitivity and specificity, making it a potential tool for intraoperative tumor margin assessment.

19.
J Biomed Opt ; 24(8): 1-7, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31429217

RESUMO

Photoacoustic microscopy (PAM) is a fast-growing biomedical imaging technique that provides high-resolution in vivo imaging beyond the optical diffusion limit. Depending on the scalable lateral resolution and achievable penetration depth, PAM can be classified into optical resolution PAM (OR-PAM) and acoustic resolution PAM (AR-PAM). The use of a microelectromechanical systems (MEMS) scanner has improved OR-PAM imaging speed significantly and is highly beneficial in the development of miniaturized handheld devices. The shallow penetration depth of OR-PAM limits the use of such devices for a wide range of clinical applications. We report the use of a high-speed MEMS scanner for both OR-PAM and AR-PAM. A high-speed, wide-area scanning integrated OR-AR-PAM system combining MEMS scanner and raster mechanical movement was developed. A lateral resolution of 5 µm and penetration depth ∼0.9-mm in vivo was achieved using OR-PAM at 586 nm, whereas a lateral resolution of 84 µm and penetration depth of ∼2-mm in vivo was achieved using AR-PAM at 532 nm.


Assuntos
Microscopia Acústica/métodos , Técnicas Fotoacústicas/métodos , Abdome/diagnóstico por imagem , Acústica , Animais , Orelha/diagnóstico por imagem , Desenho de Equipamento , Aumento da Imagem/instrumentação , Processamento de Imagem Assistida por Computador , Lasers , Camundongos , Sistemas Microeletromecânicos , Pele/diagnóstico por imagem , Análise Espectral
20.
Photoacoustics ; 16: 100144, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871888

RESUMO

Photoacoustic imaging (or optoacoustic imaging) is an upcoming biomedical imaging modality availing the benefits of optical resolution and acoustic depth of penetration. With its capacity to offer structural, functional, molecular and kinetic information making use of either endogenous contrast agents like hemoglobin, lipid, melanin and water or a variety of exogenous contrast agents or both, PAI has demonstrated promising potential in a wide range of preclinical and clinical applications. This review provides an overview of the rapidly expanding clinical applications of photoacoustic imaging including breast imaging, dermatologic imaging, vascular imaging, carotid artery imaging, musculoskeletal imaging, gastrointestinal imaging and adipose tissue imaging and the future directives utilizing different configurations of photoacoustic imaging. Particular emphasis is placed on investigations performed on human or human specimens.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa