Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Syst Biol ; 18(10): e10980, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36201279

RESUMO

Adaptive evolution under controlled laboratory conditions has been highly effective in selecting organisms with beneficial phenotypes such as stress tolerance. The evolution route is particularly attractive when the organisms are either difficult to engineer or the genetic basis of the phenotype is complex. However, many desired traits, like metabolite secretion, have been inaccessible to adaptive selection due to their trade-off with cell growth. Here, we utilize genome-scale metabolic models to design nutrient environments for selecting lineages with enhanced metabolite secretion. To overcome the growth-secretion trade-off, we identify environments wherein growth becomes correlated with a secondary trait termed tacking trait. The latter is selected to be coupled with the desired trait in the application environment where the trait manifestation is required. Thus, adaptive evolution in the model-designed selection environment and subsequent return to the application environment is predicted to enhance the desired trait. We experimentally validate this strategy by evolving Saccharomyces cerevisiae for increased secretion of aroma compounds, and confirm the predicted flux-rerouting using genomic, transcriptomic, and proteomic analyses. Overall, model-designed selection environments open new opportunities for predictive evolution.


Assuntos
Proteômica , Saccharomyces cerevisiae , Genoma , Genômica , Fenótipo , Saccharomyces cerevisiae/metabolismo
2.
Food Microbiol ; 115: 104344, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567627

RESUMO

One interesting strategy to address the increasing alcohol content of wines, associated with climate change, is to reduce the ethanol yield during fermentation. Within this strategy, the approach that would allow the clearest reduction in alcohol content is the respiration of part of the grape sugars by yeasts. Non-Saccharomyces species can be used for this purpose but suffer from a limited ability to dominate the process and complete fermentation. In turn, Saccharomyces cerevisiae shows a high production of acetic acid under the growth conditions required for respiration. Previously proposed procedures used combinations of non-Saccharomyces and S. cerevisiae starters, or a strain of S. cerevisiae (PR1018), with unique metabolic properties. In both cases, precise management of oxygen availability was required to overcome the acetic acid problem. In this work, we have developed a laboratory scale process to take advantage of the properties of PR1018 and a strain of Metschnikowia pulcherrima. This process is more robust than the previous ones and does not rely on strict control of oxygenation or even the use of this particular strain of S. cerevisiae. Aeration can be interrupted instantly without impairing the volatile acidity. Under the selected conditions, an ethanol reduction of around 3% (v/v) was obtained compared to the standard fermentation control.


Assuntos
Vitis , Vinho , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Etanol/metabolismo , Fermentação , Ácido Acético/metabolismo , Vitis/metabolismo
3.
Food Microbiol ; 114: 104282, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290870

RESUMO

The use of yeast respiratory metabolism has been proposed as a promising approach to solve the problem of increasing ethanol content in wine, which is largely due to climate change. The use of S. cerevisiae for this purpose is mostly hampered by acetic acid overproduction generated under the necessary aerobic conditions. However, it was previously shown that a reg1 mutant, alleviated for carbon catabolite repression (CCR), showed low acetic acid production under aerobic conditions. In this work directed evolution of three wine yeast strains was performed to recover CCR-alleviated strains, expecting they will also be improved concerning volatile acidity. This was done by subculturing strains on galactose, in the presence of 2-deoxyglucose for around 140 generations. As expected, all evolved yeast populations released less acetic acid than their parental strains in grape juice, under aerobic conditions. Single clones were isolated from the evolved populations, either directly or after one cycle of aerobic fermentation. Only some clones from one of three original strains showed lower acetic acid production than their parental strain. Most clones isolated from EC1118 showed slower growth. However, even the most promising clones failed to reduce acetic acid production under aerobic conditions in bioreactors. Therefore, despite the concept of selecting low acetic acid producers by using 2-deoxyglucose as selective agent was found to be correct, especially at the population level, the recovery of strains with potential industrial utility by this experimental approach remains a challenge.


Assuntos
Fermentação , Saccharomyces cerevisiae , Vinho , Ácido Acético/metabolismo , Desoxiglucose/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Vitis/microbiologia , Vinho/microbiologia , Galactose/metabolismo , Microbiologia de Alimentos , Evolução Molecular Direcionada , Aerobiose , Anaerobiose
4.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36982984

RESUMO

Glioblastoma (GBM), characterized by fast growth and invasion into adjacent tissue, is the most aggressive cancer of brain origin. Current protocols, which include cytotoxic chemotherapeutic agents, effectively treat localized disease; however, these aggressive therapies present side effects due to the high doses administered. Therefore, more efficient ways of drug delivery have been studied to reduce the therapeutic exposure of the patients. We have isolated and fully characterized small extracellular vesicles (EVs) from seven patient-derived GBM cell lines. After loading them with two different drugs, Temozolomide (TMZ) and EPZ015666, we observed a reduction in the total amount of drugs needed to trigger an effect on tumor cells. Moreover, we observed that GBM-derived small EVs, although with lower target specificity, can induce an effect on pancreatic cancer cell death. These results suggest that GBM-derived small EVs represent a promising drug delivery tool for further preclinical studies and potentially for the clinical development of GBM treatments.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Nanopartículas , Humanos , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Resistencia a Medicamentos Antineoplásicos
5.
Curr Top Microbiol Immunol ; 432: 161-170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972884

RESUMO

Most research on extracellular vesicles (EVs) from non-pathogenic fungi has been conducted in S. cerevisiae, taking advantage of the tools available for this model organism; but a few studies on EVs from yeasts of biotechnological interest are also available. Proteomic analyses in EVs from different yeast species and under different culture conditions are consistent in the identification of proteins related to glycolysis and cell wall biogenesis. Consequently, cell wall metabolism and biosynthesis appear as major functions of EVs. Additional functions have been proposed attending to the known biological activities identified on EVs proteomes, including interspecific antagonism, protection against antimicrobial agents, or clearance of aggregates of misfolded proteins (e.g. prion-like proteins). However, caution should be taken since some of these proteins might play a different role in the intracellular space or EVs (including some well known moonlighting proteins). It is also possible that many proteins appear in EVs as an indirect consequence of cellular metabolism and protein traffic, not related to a specific role in the extracellular space. These considerations become especially relevant in the context of the increasing detection power of proteomic technologies, leading in some cases to the identification of thousands of different proteins in the EVs proteome. Mutations in different secretory pathways have been related to differences in protein cargo of EVs, but no mutation has been found completely abolishing the production of EVs. Further work on the composition and biogenesis of EVs is required to better understand their biological significance.


Assuntos
Vesículas Extracelulares , Proteômica , Parede Celular , Proteoma , Saccharomyces cerevisiae/genética
6.
Food Microbiol ; 101: 103893, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34579853

RESUMO

Aerobic fermentation was previously proposed to reduce the ethanol content of wine. The main constraint found for Saccharomyces cerevisiae to be used under these conditions was the high levels of acetic acid produced by all S. cerevisiae strains previously tested. This work addressed the identification of S. cerevisiae wine yeast strains suitable for aerobic fermentation and the optimization of fermentation conditions to obtain a reduced ethanol yield with acceptable volatile acidity. This approach unveiled a great diversity in acetic acid yield for different S. cerevisiae strains under aerobic conditions, with some strains showing very low volatile acidity. Three strains were selected for further characterization in bioreactors, with natural grape must, under aerobic and anaerobic conditions. Ethanol yields were lower under aerobic than under anaerobic conditions for all strains, and acetic acid levels were low for two of them. Strain-dependent changes in volatile compounds were also observed between aerobic and anaerobic conditions. Finally, the process was optimized at laboratory scale for one strain. This is the first report of S. cerevisiae wine strains showing low acetic acid production under aerobic conditions and paves the way for simplified aerobic fermentation protocols aimed to reducing the alcohol content of wines.


Assuntos
Aerobiose , Saccharomyces cerevisiae , Vinho , Ácido Acético/análise , Etanol/análise , Fermentação , Vinho/análise , Vinho/microbiologia
7.
Food Microbiol ; 106: 104038, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690442

RESUMO

Malolactic fermentation is essential for the quality of red wines and some other wine styles. Spontaneous malolactic fermentation is often driven by Oenococcus oeni, and commercial starters for this purpose are also often of this species. The increasing number of microbial species and inoculation strategies in winemaking has prompted a growing interest in microbial interactions during wine fermentation. Among other interaction mechanisms, extracellular vesicles have been hypothesized to play a role in this context. Extracellular vesicles have already been described and analysed for several wine yeast species. In this work, the production of extracellular vesicles by O. oeni is reported for the first time. The protein content of these extracellular vesicles is also characterised. It shows differences and similarities with the recently described protein content of Lactiplantibacillus plantarum, a bacterial species also capable of performing malolactic fermentation of wine (and used sometimes as an alternative starter). This work further contributes to the development of the field of extracellular vesicles in food biotechnology.


Assuntos
Vesículas Extracelulares , Oenococcus , Vinho , Vesículas Extracelulares/metabolismo , Fermentação , Malatos/metabolismo , Oenococcus/genética , Oenococcus/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/análise
8.
Calcif Tissue Int ; 109(2): 132-138, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33839802

RESUMO

X-Linked Hypophosphatemia (XLH) is the most common cause of inherited hypophosphatemic rickets. Dental involvement, including spontaneous abscesses and/or fistulae, is an important part of the disease and has not been completely defined, especially in cohorts from developing countries. To describe oral health status in a cohort of Chilean patients with XLH and explore its correlation with biochemical presentation and treatment, we conducted a cross-sectional observational study of patients with PHEX mutation-confirmed XLH. All patients had an oral clinical exam, radiographic evaluation; clinical and biochemical data were obtained to determine their association with oral features. Twenty-six patients were included, 77% adults and 23% children. Most adults (89%) had past or current dental pulp pathology (abscesses and/or fistulae). Pulpal chamber enlargement and radiolucent apical lesions were common radiological features (94 and 74%, respectively). In children, abscess and/or fistulae were also common (33%). Caries index, which was determined by dmft/DMFT, was higher than the Chilean national average. Early and long-term therapy with phosphate and activated vitamin D was associated with lower carious index and attachment loss. XLH patients frequently present with high pulpal involvement and carious index. Conventional therapy was associated with lower carious index and attachment loss. These data highlight the importance of early and periodical dental care in order to prevent dental damage and assure a good quality of oral health for XLH patients.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Adulto , Criança , Estudos Transversais , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/epidemiologia , Raquitismo Hipofosfatêmico Familiar/genética , Fator de Crescimento de Fibroblastos 23 , Humanos , Mutação , Saúde Bucal , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Fosfatos
9.
Food Microbiol ; 94: 103670, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33279092

RESUMO

The use of non-Saccharomyces species as starter cultures together with Saccharomyces cerevisiae is becoming a common practice in the oenological industry to produce wines that respond to new market demands. In this context, microbial interactions with these non-Saccharomyces species must be considered for a rational design of yeast starter combinations. Previously, transcriptional responses of S. cerevisiae to short-term co-cultivation with Torulaspora delbrueckii, Candida sake, or Hanseniaspora uvarum was compared. An activation of sugar consumption and glycolysis, membrane and cell wall biogenesis, and nitrogen utilization was observed, suggesting a metabolic boost of S. cerevisiae in response to competing yeasts. In the present study, the transcription profile of S. cerevisiae was analyzed after 3 h of cell contact with Metschnikowia pulcherrima. Results show an over-expression of the gluco-fermentative pathway much stronger than with the other species. Moreover, a great repression of the respiration pathway has been found in response to Metschnikowia. Our hypothesis is that there is a direct interaction stress response (DISR) between S. cerevisiae and the other yeast species that, under excess sugar conditions, induces transcription of the hexose transporters, triggering glucose flow to fermentation and inhibiting respiration, leading to an increase in both, metabolic flow and population dynamics.


Assuntos
Metschnikowia/metabolismo , Saccharomyces cerevisiae/metabolismo , Aerobiose , Parede Celular/genética , Parede Celular/metabolismo , Técnicas de Cocultura , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicólise , Metschnikowia/genética , Metschnikowia/crescimento & desenvolvimento , Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vinho/análise
10.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540681

RESUMO

D-amino acid oxidase (DAAO) is an enzyme that catalyzes the oxidation of D-amino acids generating H2O2. The enzymatic chimera formed by DAAO bound to the choline-binding domain of N-acetylmuramoyl-L-alanine amidase (CLytA) induces cytotoxicity in several pancreatic and colorectal carcinoma and glioblastoma cell models. In the current work, we determined whether the effect of CLytA-DAAO immobilized in magnetic nanoparticles, gold nanoparticles, and alginate capsules offered some advantages as compared to the free CLytA-DAAO. Results indicate that the immobilization of CLytA-DAAO in magnetic nanoparticles increases the stability of the enzyme, extending its time of action. Besides, we compared the effect induced by CLytA-DAAO with the direct addition of hydrogen peroxide, demonstrating that the progressive generation of reactive oxygen species by CLytA-DAAO is more effective in inducing cytotoxicity than the direct addition of H2O2. Furthermore, a pilot study has been initiated in biopsies obtained from pancreatic and colorectal carcinoma and glioblastoma patients to evaluate the expression of the main genes involved in resistance to CLytA-DAAO cytotoxicity. Based on our findings, we propose that CLytA-DAAO immobilized in magnetic nanoparticles could be effective in a high percentage of patients and, therefore, be used as an anti-cancer therapy for pancreatic and colorectal carcinoma and glioblastoma.


Assuntos
D-Aminoácido Oxidase/metabolismo , Nanopartículas de Magnetita/química , Neoplasias/terapia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/química , Linhagem Celular Tumoral , Neoplasias Colorretais/terapia , D-Aminoácido Oxidase/uso terapêutico , Glioblastoma/terapia , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Espécies Reativas de Oxigênio/toxicidade , Neoplasias Pancreáticas
12.
Int J Mol Sci ; 21(22)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198289

RESUMO

The combination of the choline binding domain of the amidase N-acetylmuramoyl-L-alanine (CLytA)-D-amino acid oxidase (DAAO) (CLytA-DAAO) and D-Alanine induces cell death in several pancreatic and colorectal carcinoma and glioblastoma cell lines. In glioblastoma cell lines, CLytA-DAAO-induced cell death was inhibited by a pan-caspase inhibitor, suggesting a classical apoptotic cell death. Meanwhile, the cell death induced in pancreatic and colon carcinoma cell lines is some type of programmed necrosis. In this article, we studied the mechanisms that trigger CLytA-DAAO-induced cell death in pancreatic and colorectal carcinoma and glioblastoma cell lines and we acquire a further insight into the necrotic cell death induced in pancreatic and colorectal carcinoma cell lines. We have analyzed the intracellular calcium mobilization, mitochondrial membrane potential, PARP-1 participation and AIF translocation. Although the mitochondrial membrane depolarization plays a crucial role, our results suggest that CLytA-DAAO-induced cell death is context dependent. We have previously detected pancreatic and colorectal carcinoma cell lines (Hs766T and HT-29, respectively) that were resistant to CLytA-DAAO-induced cell death. In this study, we have examined the putative mechanism underlying the resistance in these cell lines, evaluating both detoxification mechanisms and the inflammatory and survival responses. Overall, our results provide a better understanding on the cell death mechanism induced by CLytA-DAAO, a promising therapy against cancer.


Assuntos
Fator de Indução de Apoptose/metabolismo , Neoplasias Colorretais/metabolismo , D-Aminoácido Oxidase/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Neoplasias Pancreáticas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Antineoplásicos/farmacologia , Apoptose , Biópsia , Cálcio/metabolismo , Morte Celular , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Inflamação , Potencial da Membrana Mitocondrial , Subunidade p50 de NF-kappa B/metabolismo , Necrose , Estresse Oxidativo , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Food Microbiol ; 70: 214-223, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29173630

RESUMO

The use of non-Saccharomyces strains in aerated conditions has proven effective for alcohol content reduction in wine during lab-scale fermentation. The process has been scaled up to 20 L batches, in order to produce lower alcohol wines amenable to sensory analysis. Sequential instead of simultaneous inoculation was chosen to prevent oxygen exposure of Saccharomyces cerevisiae during fermentation, since previous results indicated that this would result in increased acetic acid production. In addition, an adaptation step was included to facilitate non-Saccharomyces implantation in natural must. Wines elaborated with Torulaspora delbrueckii or Metschnikowia pulcherrima in aerated conditions contained less alcohol than control wine (S. cerevisiae, non-aerated). Sensory and aroma analysis revealed that the quality of mixed fermentations was affected by the high levels of some yeast amino acid related byproducts, which suggests that further progress requires a careful selection of non-Saccharomyces strains and the use of specific N-nutrients.


Assuntos
Frutas/microbiologia , Vitis/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Leveduras/metabolismo , Fermentação , Frutas/química , Humanos , Odorantes/análise , Projetos Piloto , Paladar , Vitis/química , Compostos Orgânicos Voláteis/química , Vinho/análise
14.
Microb Cell Fact ; 15(1): 156, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27627879

RESUMO

BACKGROUND: Aerobic fermentation of grape must, leading to respiro-fermentative metabolism of sugars, has been proposed as way of reducing alcohol content in wines. Two factors limit the usefulness of Saccharomyces cerevisiae for this application, the Crabtree effect, and excess volatile acidity under aerobic conditions. This work aimed to explore the impact on ethanol acetate production of different S. cerevisiae strains deleted for genes previously related with the Crabtree phenotype. RESULTS: Recombinant strains were constructed on a wine industrial genetic background, FX10. All yeast strains, including FX10, showed respiro-fermentative metabolism in natural grape must under aerobic conditions, as well as a concomitant reduction in ethanol yield. This indicates that the Crabtree effect is not a major constrain for reaching relevant respiration levels in grape must. Indeed, only minor differences in ethanol yield were observed between the original and some of the recombinant strains. In contrast, some yeast strains showed a relevant reduction of acetic acid production. This was identified as a positive feature for the feasibility of alcohol level reduction by respiration. Reduced acetic acid production was confirmed by a thorough analysis of these and some additional deletion strains (involving genes HXK2, PYK1, REG1, PDE2 and PDC1). Some recombinant yeasts showed altered production of glycerol and pyruvate derived metabolites. CONCLUSIONS: REG1 and PDC1 deletion strains showed a strong reduction of acetic acid yield in aerobic fermentations. Since REG1 defective strains may be obtained by non-GMO approaches, these gene modifications show good promise to help reducing ethanol content in wines.


Assuntos
Ácido Acético/metabolismo , Etanol/metabolismo , Fermentação , Proteínas Fúngicas/genética , Hexoquinase/genética , Proteína Fosfatase 1/genética , Piruvato Descarboxilase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aerobiose , Proteínas Fúngicas/metabolismo , Deleção de Genes , Glicerol/metabolismo , Hexoquinase/metabolismo , Proteína Fosfatase 1/metabolismo , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vitis/metabolismo , Vinho/análise
15.
BMC Cancer ; 15: 240, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25885658

RESUMO

BACKGROUND: Colorectal carcinoma is a common cause of cancer. Adjuvant treatments include: 5-fluorouracil administered together with folinic acid, or more recently, oral fluoropyrimidines such as capecitabine, in combination with oxaliplatin or irinotecan. Metastatic colorectal cancer patients can benefit from other additional treatments such as cetuximab or bevacizumab. METHODS: Using cell culture techniques, we isolated clonal populations from primary cultures of ascitic effusion derived from a colon cancer patient and after several passages an established cell line, HGUE-C-1, was obtained. Genetic analysis of HGUE-C-1 cells was performed by PCR of selected exons and sequencing. Cell proliferation studies were performed by MTT assays and cell cycle analyses were performed by flow cytometry. Retinoblastoma activity was measured by luciferase assays and proteins levels and activity were analysed by Western blot or immunohistochemistry. RESULTS: We have established a new cell line from ascitic efussion of a colon cancer patient who did not respond to 5-fluorouracil or irinotecan. HGUE-C-1 cells did not show microsatellite instability and did not harbour mutations in KRAS, BRAF, PI3KCA or TP53. However, these cells showed loss of heterozygosity affecting Adenomatous Polyposis Coli and nuclear staining of ß-catenin protein. The HGUE-C-1 cell line was sensitive to erlotinib, gefitinib, NVP-BEZ235, rapamycin and trichostatin, among other drugs, but partially resistant to heat shock protein inhibitors and highly resistant to AZD-6244 and oxaliplatin, even though the patient from which this cell line was derived had not been exposed to these drugs. Molecular characterization of this cell line revealed low expression levels and activity of Retinoblastoma protein and elevated basal levels of Erk1/2 activity and p70S6K expression and activity, which may be related to chemoresistance mechanisms. CONCLUSIONS: HGUE-C-1 represents a novel and peculiar colon carcinoma model to study chemoresistance to chemotherapeutic agents and to novel anti-neoplasic drugs that interrupt signalling pathways such as the APC/ßcatenin, Ras/Raf/Mek/Erk, PI3K/mTOR/p70S6K pathways as well as histone regulation mechanisms.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Idoso , Antineoplásicos/farmacologia , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Expressão Gênica , Humanos , Masculino , Instabilidade de Microssatélites , Mutação , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais
16.
Appl Microbiol Biotechnol ; 99(9): 3993-4003, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25582558

RESUMO

We have developed a wine fermentation procedure that takes advantage of the metabolic features of a previously characterized Metschnikowia pulcherrima strain in order to reduce ethanol production. It involves the use of M. pulcherrima/Saccharomyces cerevisiae mixed cultures, controlled oxygenation conditions during the first 48 h of fermentation, and anaerobic conditions thereafter. The influence of different oxygenation regimes and initial inoculum composition on yeast physiology and final ethanol content was studied. The impact of oxygenation on yeast physiology goes beyond the first aerated step and influences yields and survival rates during the anaerobic stage. The activity of M. pulcherrima in mixed oxygenated cultures resulted in a clear reduction in ethanol yield, as compared to S. cerevisiae. Despite relatively low initial cell numbers, S. cerevisiae always predominated in mixed cultures by the end of the fermentation process. Strain replacement was faster under low oxygenation levels. M. pulcherrima confers an additional advantage in terms of dissolved oxygen, which drops to zero after a few hours of culture, even under highly aerated conditions, and this holds true for mixed cultures. Alcohol reduction values about 3.7 % (v/v) were obtained for mixed cultures under high aeration, but they were associated to unacceptable volatile acidity levels. In contrast, under optimized conditions, only 0.35 g/L acetic acid was produced, for an alcohol reduction of 2.2 % (v/v), and almost null dissolved oxygen during the process.


Assuntos
Álcoois/análise , Fermentação , Metschnikowia/metabolismo , Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Aerobiose , Anaerobiose , Metschnikowia/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento
17.
Appl Microbiol Biotechnol ; 99(3): 1273-86, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25620600

RESUMO

We used experimental evolution in order to identify genes involved in the adaptation of Saccharomyces cerevisiae to the early stages of alcoholic fermentation. Evolution experiments were run for about 200 generations, in continuous culture conditions emulating the initial stages of wine fermentation. We performed whole-genome sequencing of four adapted strains from three independent evolution experiments. Mutations identified in these strains pointed to the Rsp5p-Bul1/2p ubiquitin ligase complex as the preferred evolutionary target under these experimental conditions. Rsp5p is a multifunctional enzyme able to ubiquitinate target proteins participating in different cellular processes, while Bul1p is an Rsp5p substrate adaptor specifically involved in the ubiquitin-dependent internalization of Gap1p and other plasma membrane permeases. While a loss-of-function mutation in BUL1 seems to be enough to confer a selective advantage under these assay conditions, this did not seem to be the case for RSP5 mutated strains, which required additional mutations, probably compensating for the detrimental effect of altered Rsp5p activity on essential cellular functions. The power of this experimental approach is illustrated by the identification of four independent mutants, each with a limited number of SNPs, affected within the same pathway. However, in order to obtain information relevant for a specific biotechnological process, caution must be taken in the choice of the background yeast genotype (as shown in this case for auxotrophies). In addition, the use of very stable continuous fermentation conditions might lead to the selection of a rather limited number of adaptive responses that would mask other possible targets for genetic improvement.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Vitis/microbiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Processos Autotróficos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Fermentação , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitina-Proteína Ligases/genética , Vitis/metabolismo
18.
Microb Cell Fact ; 13: 85, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24928139

RESUMO

BACKGROUND: Saccharomyces cerevisiae is the most relevant yeast species conducting the alcoholic fermentation that takes place during winemaking. Although the physiology of this model organism has been extensively studied, systematic quantitative physiology studies of this yeast under winemaking conditions are still scarce, thus limiting the understanding of fermentative metabolism of wine yeast strains and the systematic description, modelling and prediction of fermentation processes. In this study, we implemented and validated the use of chemostat cultures as a tool to simulate different stages of a standard wine fermentation, thereby allowing to implement metabolic flux analyses describing the sequence of metabolic states of S. cerevisae along the wine fermentation. RESULTS: Chemostat cultures mimicking the different stages of standard wine fermentations of S. cerevisiae EC1118 were performed using a synthetic must and strict anaerobic conditions. The simulated stages corresponded to the onset of the exponential growth phase, late exponential growth phase and cells just entering stationary phase, at dilution rates of 0.27, 0.04, 0.007 h-1, respectively. Notably, measured substrate uptake and product formation rates at each steady state condition were generally within the range of corresponding conversion rates estimated during the different batch fermentation stages.Moreover, chemostat data were further used for metabolic flux analysis, where biomass composition data for each condition was considered in the stoichiometric model. Metabolic flux distributions were coherent with previous analyses based on batch cultivations data and the pseudo-steady state assumption. CONCLUSIONS: Steady state conditions obtained in chemostat cultures reflect the environmental conditions and physiological states of S. cerevisiae corresponding to the different growth stages of a typical batch wine fermentation, thereby showing the potential of this experimental approach to systematically study the effect of environmental relevant factors such as temperature, sugar concentration, C/N ratio or (micro) oxygenation on the fermentative metabolism of wine yeast strains.


Assuntos
Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia , Aminoácidos/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Tamanho Celular , Análise do Fluxo Metabólico , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento
19.
Clin Transl Oncol ; 26(4): 864-871, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37651021

RESUMO

PURPOSE: Clinical practice guidelines recommend that all patients with metastatic colorectal cancer (mCRC) should be tested for mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H). We aimed to describe the dMMR/MSI-H testing practice in patients with mCRC in Spanish centers. METHODS: Multicenter, observational retrospective study that included patients newly diagnosed with mCRC or who progressed to a metastatic stage from early/localized stages. RESULTS: Three hundred patients were included in the study from May 2020 through May 2021, with a median age of 68 years, and two hundred twenty-five (75%) had stage IV disease at initial diagnosis; two hundred eighty-four patients received first-line treatment, and dMMR/MSI-H testing was performed in two hundred fifty-one (84%) patients. The results of the dMMR/MSI-H tests were available in 61 (24%) of 251 patients before the diagnosis of metastatic disease and in 191 (81%) of 236 evaluable patients for this outcome before the initiation of first-line treatment. Among the 244 patients who were tested for dMMR/MSI-H with IHC or PCR, 14 (6%) were MMR deficient. The most frequent type of first-line treatment was the combination of chemotherapy and biological agent, that was received by 71% and 50% of patients with MMR proficient and deficient tumors, respectively, followed by chemotherapy alone, received in over 20% of patients in each subgroup. Only 29% of dMMR/MSI-H tumors received first-line immunotherapy. CONCLUSION: Our study suggests that a high proportion of patients with mCRC are currently tested for dMMR/MSI-H in tertiary hospitals across Spain. However, there is still room for improvement until universal testing is achieved. TRIAL REGISTRATION: Not applicable.


Assuntos
Neoplasias Encefálicas , Neoplasias do Colo , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Neoplasias Retais , Idoso , Humanos , Neoplasias do Colo/patologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Instabilidade de Microssatélites , Estudos Retrospectivos , Espanha
20.
Microb Biotechnol ; 16(5): 1027-1040, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36840970

RESUMO

The recent introduction of non-conventional yeast species as companion wine starters has prompted a growing interest in microbial interactions during wine fermentation. There is evidence of interactions through interference and exploitation competition, as well as interactions depending on physical contact. Furthermore, the results of some transcriptomic analyses suggest interspecific communication, but the molecules or biological structures involved in recognition are not well understood. In this work, we explored extracellular vesicles (EVs) as possible mediators of interspecific communication between wine yeasts. The transcriptomic response of Saccharomyces cerevisiae after 3 h of contact with a fraction enriched in EVs of Metschnikowia pulcherrima was compared with that induced by active M. pulcherrima cells. Interestingly, there is a high level of overlap between the transcriptomic profiles of yeast cells challenged by either M. pulcherrima whole cells or the EV-enriched fraction. The results indicate an upregulation of yeast metabolism in response to competing species (in line with previous results). This finding points to the presence of a signal, in the EV-enriched fraction, that can be perceived by the yeast cells as a cue for the presence of competitors, even in the absence of metabolically active cells of the other species.


Assuntos
Vesículas Extracelulares , Vinho , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Técnicas de Cocultura , Fermentação , Vesículas Extracelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa