Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Curr Issues Mol Biol ; 45(12): 9904-9916, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38132464

RESUMO

Lipids are important modifiers of protein function, particularly as parts of lipoproteins, which transport lipophilic substances and mediate cellular uptake of circulating lipids. As such, lipids are of particular interest as blood biological markers for cardiovascular disease (CVD) as well as for conditions linked to CVD such as atherosclerosis, diabetes mellitus, obesity and dietary states. Notably, lipid research is particularly well developed in the context of CVD because of the relevance and multiple causes and risk factors of CVD. The advent of methods for high-throughput screening of biological molecules has recently resulted in the generation of lipidomic profiles that allow monitoring of lipid compositions in biological samples in an untargeted manner. These and other earlier advances in biomedical research have shaped the knowledge we have about lipids in CVD. To evaluate the knowledge acquired on the multiple biological functions of lipids in CVD and the trends in their research, we collected a dataset of references from the PubMed database of biomedical literature focused on plasma lipids and CVD in human and mouse. Using annotations from these records, we were able to categorize significant associations between lipids and particular types of research approaches, distinguish non-biological lipids used as markers, identify differential research between human and mouse models, and detect the increasingly mechanistic nature of the results in this field. Using known associations between lipids and proteins that metabolize or transport them, we constructed a comprehensive lipid-protein network, which we used to highlight proteins strongly connected to lipids found in the CVD-lipid literature. Our approach points to a series of proteins for which lipid-focused research would bring insights into CVD, including Prostaglandin G/H synthase 2 (PTGS2, a.k.a. COX2) and Acylglycerol kinase (AGK). In this review, we summarize our findings, putting them in a historical perspective of the evolution of lipid research in CVD.

2.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629110

RESUMO

Unlike genomic alterations, gene expression profiles have not been widely used to refine cancer therapies. We analyzed transcriptional changes in acute myeloid leukemia (AML) cell lines in response to standard first-line AML drugs cytarabine and daunorubicin by means of RNA sequencing. Those changes were highly cell- and treatment-specific. By comparing the changes unique to treatment-sensitive and treatment-resistant AML cells, we enriched for treatment-relevant genes. Those genes were associated with drug response-specific pathways, including calcium ion-dependent exocytosis and chromatin remodeling. Pharmacological mimicking of those changes using EGFR and MEK inhibitors enhanced the response to daunorubicin with minimum standalone cytotoxicity. The synergistic response was observed even in the cell lines beyond those used for the discovery, including a primary AML sample. Additionally, publicly available cytotoxicity data confirmed the synergistic effect of EGFR inhibitors in combination with daunorubicin in all 60 investigated cancer cell lines. In conclusion, we demonstrate the utility of treatment-evoked gene expression changes to formulate rational drug combinations. This approach could improve the standard AML therapy, especially in older patients.


Assuntos
Leucemia Mieloide Aguda , Humanos , Idoso , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Daunorrubicina/farmacologia , Linhagem Celular , Montagem e Desmontagem da Cromatina , Receptores ErbB
3.
Bioinformatics ; 37(21): 3981-3982, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358314

RESUMO

SUMMARY: Lipids exhibit an essential role in cellular assembly and signaling. Dysregulation of these functions has been linked with many complications including obesity, diabetes, metabolic disorders, cancer and more. Investigating lipid profiles in such conditions can provide insights into cellular functions and possible interventions. Hence the field of lipidomics is expanding in recent years. Even though the role of individual lipids in diseases has been investigated, there is no resource to perform disease enrichment analysis considering the cumulative association of a lipid set. To address this, we have implemented the LipiDisease web server. The tool analyzes millions of records from the PubMed biomedical literature database discussing lipids and diseases, predicts their association and ranks them according to false discovery rates generated by random simulations. The tool takes into account 4270 diseases and 4798 lipids. Since the tool extracts the information from PubMed records, the number of diseases and lipids will be expanded over time as the biomedical literature grows. AVAILABILITY AND IMPLEMENTATION: The LipiDisease webserver can be freely accessed at http://cbdm-01.zdv.uni-mainz.de:3838/piyusmor/LipiDisease/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Lipídeos , Software , PubMed , Bases de Dados Factuais , Lipídeos/análise , Mineração de Dados
4.
Drug Metab Dispos ; 46(11): 1827-1835, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30154105

RESUMO

Hepatic induction in response to drugs and environmental chemicals affects drug therapies and energy metabolism. We investigated whether the induction is transmitted to the offspring. We injected 3-day- and 6-week-old F0 female mice with TCPOBOP, an activator of the nuclear receptor constitutive androstane receptor (CAR, NR1I3), and mated them 1-6 weeks afterward. We detected in the offspring long-lasting alterations of CAR-mediated drug disposition, energy metabolism, and lipid profile. The transmission to the first filial generation (F1) was mediated by TCPOBOP transfer from the F0 adipose tissue via milk, as revealed by embryo transfer, crossfostering experiments, and liquid chromatography-mass spectrometry analyses. The important environmental pollutant PCB153 activated CAR in the F1 generation in a manner similar to TCPOBOP. Our findings indicate that chemicals accumulating and persisting in adipose tissue may exert liver-mediated, health-relevant effects on F1 offspring simply via physical transmission in milk. Such effects may occur even if treatment has been terminated far ahead of conception. This should be considered in assessing developmental toxicity and in the long-term follow-up of offspring of mothers exposed to both approved and investigational drugs, and to chemicals with known or suspected accumulation in adipose tissue.


Assuntos
Receptores Citoplasmáticos e Nucleares/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Receptor Constitutivo de Androstano , Feminino , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Gravidez , Piridinas/farmacologia
5.
J Nanosci Nanotechnol ; 15(6): 4039-45, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26369010

RESUMO

Fine combination of natural botanical extracts to evaluate and maximize their medicinal efficacy has been studied for long. However, their limited shelf-life, complicated extraction protocols, and difficult compositional analysis have always been a problem. It is due to this that such materials take time to convert them into a proper pharmaceutical technology or product. In this context, we report on synthesis of self-assembled template of one of the most popular natural product, aloevera. This forms a fine porous membrane like structure, in which a natural drug, curcumin has been immobilized/trapped. The so-made curcumin-loaded-aloevera (CLA) structures have been carefully evaluated using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), atomic force microscopy (AFM), UV-vis spectroscopy and fluorescence microscopy. While FTIR shows that there is no chemical interaction between aloevera and curcumin, the pores are finely occupied by curcumin molecules. Fine microscopy structures reveal their distribution and fluorescence microscopy confirm the presence of curcumin within the pores. TGA shows 15% loading of the curcumin in the template and UV-visible spectroscopy data shows independent peaks of both, aloevera (196 nm and 256 nm) and curcumin (423 nm), respectively. When subjected to antioxidant studies, using DPPH assays, CLAs show a synergistically superior DPPH radical scavenging activity as compared to only curcumin and only aloevera extract. Same is true for hydroxyl and NO2 radicals. Trans-membrane release study reveals that there is no significant difference in the amount of curcumin release from CLAs till initial 30 min, however, it increases steadily thereafter. CLA is found to facilitate efficient release of curcumin in 5 h, which is higher as compared to the curcumin alone.


Assuntos
Aloe/química , Antioxidantes/química , Curcumina/química , Nanopartículas/química , Extratos Vegetais/química , Antioxidantes/metabolismo , Antioxidantes/farmacocinética , Portadores de Fármacos/química , Membranas Artificiais , Óxido Nítrico/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacocinética , Superóxidos/metabolismo
6.
J Nanosci Nanotechnol ; 15(6): 4046-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26369011

RESUMO

With the advances in nanoscience and nanotechnology the interest of researchers has expanded to interdisciplinary domain like bio-medical applications. Among such domains, one of the most important areas explored meticulously is the development of promising solutions in diabetes therapeutics. The disease associated with metabolic disorder, is one of the major challenges, due to its ever-increasing number of patients. The adverse effects of the synthetic enzymes like α-amylase and α-glucosidase inhibitors have invited many scientists to develop promising contender with minimal side-effects. On the other hand, Zinc has strong role in insulin synthesis, storage and secretion and thus its deficiency can be related to diabetes. In this context we have explored natural extract of Red Sandalwood (RSW) as a potent anti-diabetic agent, in conjugation with ZnO nanoparticles. ZnO nanoparticles have been synthesized via soft chemistry routes and duly characterized for their phase formation with the help of X-ray diffraction technique and Field-Emission Scanning Electron Microscopy. These monodispersed nanoparticles, -20 nm in size, were further conjugated to RSW extract. The conjugation chemistry was studied via Fourier transform infrared spectroscopy, UV-visible spectroscopy. Extract loading percentage was found from thermo-gravimetric analysis. 65% of the RSW extract was found conjugated to the ZnO nanoparticles. The anti-diabetic activity was assessed with the help of like α-amylase and α-glucosidase inhibition assay with murine pancreatic and small intestinal extracts. It was observed that the conjugated ZnO-RSW nanoparticles showed excellent activity against the crude murine pancreatic glucosidase as compared to the individual ZnO nanoparticles and the RSW extract. The ZnO-RSW conjugate showed 61.93% of inhibition while the bare ZnO nanoparticles and RSW showed 21.48% and 5.90% respectively.


Assuntos
Hipoglicemiantes/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Santalum/química , Óxido de Zinco/química , Animais , Glucosidases/antagonistas & inibidores , Glucosidases/efeitos dos fármacos , Glucosidases/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Extratos Vegetais/farmacologia , Suínos , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/efeitos dos fármacos , alfa-Amilases/metabolismo
7.
J Nanosci Nanotechnol ; 15(12): 9464-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682367

RESUMO

Iron oxide nanoparticles (IONPs) have gained immense importance recently as drug nanocarriers due to easy multifunctionalization, simultaneous targeting, imaging and cancer hyperthermia. Herein, we report a novel nanomedicine comprising of IONPs core functionalized with a potent anticancer bioactive principle, diosgenin from medicinal plant Dioscorea bulbifera via citric acid linker molecule. IONPs were synthesized by reverse co-precipitation and characterized using field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS). Diosgenin functionalization was confirmed using fourier transform infrared spectroscopy (FTIR) and biochemical methods. Synthesized IONPs, citrate linked IONPs (IONPs-CA), diosgenin functionalized IONPs (IONPs-D) along with free citric acid and diosgenin were checked for anticancer activity against MCF7 breast cancer cells by MTT assay, wound migration assay, confocal microscopy and protein expression by western blotting. Size of IONPs, IONPs-CA and IONPs-D gradually increased ranging from 12 to 21 nm as confirmed by FESEM and HRTEM. Signature peaks of diosgenin at 2914, 1166 and 1444 cm-1 IONPs-D, revealed in FTIR indicated the presence of functionalized diosgenin. IONPs-D exhibited 51.08 ± 0.37% antiproliferative activity against MCF7 cells, which was found to be superior to free citric acid (17.71 ± 0.58%) and diosgenin (33.31 ± 0.37%). Treatment with IONPs-D exhibited reduced wound migration upto 40.83 ± 2.91% compared to bare IONPs (89.03 ± 2.58%) and IONPs-CA (50.35 ± 0.48%). IONPs-D and diosgenin exhibited apoptosis induction, confirmed by Alexa Fluor 488 annexin V/PI double-stained cells indicating extensive cell membrane damage coupled with PI influx leading to nuclear staining in treated cells. IONPs-D mediated selective PARP cleavage strongly rationalized it as superior apoptotic inducers. Based on these findings, IONPs-D can be considered as first diosgenin functionalized novel magnetic nanomedicine with antiproliferative, migration inhibiting and apoptosis inducing properties against breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Diosgenina/farmacologia , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Humanos , Células MCF-7
8.
Cells ; 10(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805436

RESUMO

Long intergenic non-coding RNAs (LincRNAs) are long RNAs that do not encode proteins. Functional evidence is lacking for most of them. Their biogenesis is not well-known, but it is thought that many lincRNAs originate from genomic duplication of coding material, resulting in pseudogenes, gene copies that lose their original function and can accumulate mutations. While most pseudogenes eventually stop producing a transcript and become erased by mutations, many of these pseudogene-based lincRNAs keep similarity to the parental gene from which they originated, possibly for functional reasons. For example, they can act as decoys for miRNAs targeting the parental gene. Enrichment analysis of function is a powerful tool to discover the functional effects of a treatment producing differential expression of transcripts. However, in the case of lincRNAs, since their function is not easy to define experimentally, such a tool is lacking. To address this problem, we have developed an enrichment analysis tool that focuses on lincRNAs exploiting their functional association, using as a proxy function that of the parental genes and has a focus on human diseases.


Assuntos
Doença/genética , Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , Neoplasias da Mama/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Internet , Estimativa de Kaplan-Meier , Prognóstico , RNA Longo não Codificante/metabolismo , Interface Usuário-Computador
9.
Oxid Med Cell Longev ; 2021: 3917028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257800

RESUMO

BACKGROUND: Long-term hematopoietic stem cells (LT-HSCs) reside in bone marrow niches with tightly controlled reactive oxygen species (ROS) levels. ROS increase results into LT-HSC differentiation and stem cell exhaustion. Paraoxonase 2 (PON2) has been shown to be important for ROS control. OBJECTIVES: We investigate the effects of inactivation of the PON2 gene on hematopoietic cell differentiation and activity. METHODS AND RESULTS: In young mice with inactivated Pon2 gene (Pon2 -/-, <3 months), we observed an increase of LT-HSCs and a reduced frequency of progenitor cells. In competitive transplantations, young Pon2-/- BM outcompeted WT BM at early time points. ROS levels were significantly increased in Pon2-/- whole BM, but not in Pon2-/- LT-HSCs. In more differentiated stages of hematopoiesis, Pon2 deficiency led to a misbalanced erythropoiesis both in physiologic and stress conditions. In older mice (>9 months), Pon2 depletion caused an increase in LT-HSCs as well as increased levels of granulocyte/macrophage progenitors (GMPs) and myeloid skewing, indicating a premature aging phenotype. No significant changes in ROS levels in old Pon2-/- LT- and short-term (ST-) HSCs were observed, but a significant reduction of spontaneous apoptotic cell death was measured. RNA-seq analysis in Pon2 -/- LT-HSCs identified overrepresentation of genes involved in the C-X-C chemokine receptor type 4 (Cxcr4) signaling, suggesting compensatory mechanisms to overcome ROS-mediated accelerated aging in hematopoietic progenitor cells. CONCLUSIONS: In summary, our current data indicate that PON2 is involved in the regulation of HSC functions.


Assuntos
Antioxidantes/metabolismo , Arildialquilfosfatase/deficiência , Eritropoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Arildialquilfosfatase/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Células-Tronco Hematopoéticas/enzimologia , Camundongos , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
10.
Bio Protoc ; 10(4): e3520, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654745

RESUMO

Chromatin immunoprecipitation is extensively used to investigate the epigenetic profile and transcription factor binding sites in the genome. However, when the starting material is limited, the conventional ChIP-Seq approach cannot be implemented. This protocol describes a method that can be used to generate the chromatin profiles from as low as 100 human or 1,000 Drosophila cells. The method employs tagmentation to fragment the chromatin with concomitant addition of sequencing adaptors. The method generates datasets with high signal to noise ratio and can be subjected to standard tools for ChIP-Seq analysis.

11.
Oncotarget ; 10(51): 5298-5312, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31523390

RESUMO

Recently approved cancer drugs remain out-of-reach to most patients due to prohibitive costs and only few produce clinically meaningful benefits. An untapped alternative is to enhance the efficacy and safety of existing cancer drugs. We hypothesized that the response to topoisomerase II poisons, a very successful group of cancer drugs, can be improved by considering treatment-associated transcript levels. To this end, we analyzed transcriptomes from Acute Myeloid Leukemia (AML) cell lines treated with the topoisomerase II poison etoposide. Using complementary criteria of co-regulation within networks and of essentiality for cell survival, we identified and functionally confirmed 11 druggable drivers of etoposide cytotoxicity. Drivers with pre-treatment expression predicting etoposide response (e.g., PARP9) generally synergized with etoposide. Drivers repressed by etoposide (e.g., PLK1) displayed standalone cytotoxicity. Drivers, whose modulation evoked etoposide-like gene expression changes (e.g., mTOR), were cytotoxic both alone and in combination with etoposide. In summary, both pre-treatment gene expression and treatment-driven changes contribute to the cell killing effect of etoposide. Such targets can be tweaked to enhance the efficacy of etoposide. This strategy can be used to identify combination partners or even replacements for other classical anticancer drugs, especially those interfering with DNA integrity and transcription.

12.
Life Sci Alliance ; 2(4)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31331983

RESUMO

Chromatin immunoprecipitation (ChIP) followed by next generation sequencing (ChIP-Seq) is a powerful technique to study transcriptional regulation. However, the requirement of millions of cells to generate results with high signal-to-noise ratio precludes it in the study of small cell populations. Here, we present a tagmentation-assisted fragmentation ChIP (TAF-ChIP) and sequencing method to generate high-quality histone profiles from low cell numbers. The data obtained from the TAF-ChIP approach are amenable to standard tools for ChIP-Seq analysis, owing to its high signal-to-noise ratio. The epigenetic profiles from TAF-ChIP approach showed high agreement with conventional ChIP-Seq datasets, thereby underlining the utility of this approach.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Drosophila/genética , Histonas/metabolismo , Animais , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células K562 , Razão Sinal-Ruído , Software , Sequenciamento Completo do Genoma
13.
Chem Commun (Camb) ; 53(8): 1409-1412, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28079217

RESUMO

This report describes the hitherto unobserved cisplatin induced self-assembly of 2D-graphene oxide sheets into 3D-spherical nano-scale particles. These nanoparticles can encompass dual DNA damaging drugs simultaneously. A combination of confocal microscopy, gel electrophoresis and flow cytometry studies clearly demonstrated that these novel nanoparticles can internalize into cancer cells by endocytosis, localize into lysosomes, and damage DNA, leading to apoptosis. Cell viability assays indicated that these nanoparticles were more cytotoxic towards cancer cells compared to healthy cells.


Assuntos
Antineoplásicos/química , Cisplatino/química , Dano ao DNA , Grafite/química , Nanopartículas/química , Óxidos/síntese química , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Óxidos/química , Relação Estrutura-Atividade
14.
ACS Appl Mater Interfaces ; 8(21): 13218-31, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27160664

RESUMO

Detouring of conventional DNA damaging anticancer drugs into mitochondria to damage mitochondrial DNA is evolving as a promising strategy in chemotherapy. Inhibiting single target in mitochondria would eventually lead to the emergence of drug resistance. Moreover, targeting mitochondria selectively in cancer cells, keeping them intact in healthy cells, remains a major challenge. Herein, triphenylphosphine (TPP)-coated positively charged 131.6 nm spherical nanoparticles (NPs) comprised of α-tocopheryl succinate (TOS, inhibitor of complex II in electron transport chain) and obatoclax (Obt, inhibitor of Bcl-2) were engineered. The TOS-TPP-Obt-NPs entered into acidic lysosomes via macropinocytosis, followed by lysosomal escape and finally homed into mitochondria over a period of 24 h. Subsequently, these TOS-TPP-Obt-NPs triggered mitochondrial outer membrane permeabilization (MOMP) by inhibiting antiapoptotic Bcl-2, leading to Cytochrome C release. These TOS-TPP-Obt-NPs mediated mitochondrial damage induced cellular apoptosis through caspase-9 and caspase-3 cleavage to show improved efficacy in HeLa cells. Moreover, TOS-TPP-Obt-NPs induced MOMP in drug-resistant triple negative breast cancer cells (MDA-MB-231), leading to remarkable efficacy, compared to the combination of free drugs in higher drug concentrations. Results presented here clearly stimulate the usage of multiple drugs to perturb simultaneously diverse targets, selectively in mitochondria, as next-generation cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nanopartículas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Células HeLa , Humanos , Indóis , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Pirróis/química , Pirróis/farmacologia , alfa-Tocoferol/química , alfa-Tocoferol/farmacologia
15.
ACS Appl Mater Interfaces ; 7(33): 18327-35, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26258746

RESUMO

Phosphatidylinositol-3-kinase (PI3K) signaling has been hijacked in different types of cancers. Hence, PI3K inhibitors have emerged as novel targeted therapeutics in cancer treatment as mono and combination therapy along with other DNA damaging drugs. However, targeting PI3K signaling with small molecules leads to the emergence of drug resistance and severe side effects to the cancer patients. To address these, we have developed a biocompatible, biodegradable cholesterol-based chimeric nanoparticle (CNP), which can simultaneously load PI103, doxorubicin, and cisplatin in a controlled ratiometric manner. Size, shape, and morphology of these CNPs were characterized by dynamic light scattering (DLS), field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Increased amounts of PI103, doxorubicin, and cisplatin were released from CNPs through controlled and continuous manner over 120 h at pH = 5.5 compared to neutral pH. The CNPs showed much enhanced in vitro cytotoxicity in HeLa, HL60, MCF7, and MDA-MB-231 cancer cells compared to a free drug cocktail at 24 and 48 h by inducing apoptosis. Confocal laser scanning microscopy (CLSM) imaging revealed that indeed these CNPs were internalized into subcellular lysosomes through endocytosis in a time dependent mode over 6 h and retained inside for 48 h in HeLa, MDA-MB-231, and MCF7 cells. These CNPs showed their efficacy by damaging DNA and inhibiting Akt as a downstream modulator of PI3K signaling in HeLa cervical cancer cells. These CNPs have the potential to open up new directions in next-generation nanomedicine by simultaneous targeting of multiple oncogenic signaling pathways and inducing DNA damage for augmented therapeutic outcome by reducing toxic side effects and overcoming drug resistance.


Assuntos
Dano ao DNA , Portadores de Fármacos/química , Nanopartículas/química , Fosfatidilinositol 3-Quinases/metabolismo , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Colesterol/química , Cisplatino/química , Cisplatino/toxicidade , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/toxicidade , Difusão Dinâmica da Luz , Furanos/química , Furanos/toxicidade , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Piridinas/química , Piridinas/toxicidade , Pirimidinas/química , Pirimidinas/toxicidade , Transdução de Sinais/efeitos dos fármacos
16.
J Mater Chem B ; 3(22): 4597-4606, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262403

RESUMO

Preventing chronic hyperglycaemia and associated oxidative stress is utmost important for the treatment and management of Type 2 Diabetes Mellitus (T2DM). Here we report the role of different size surface defect rich ZnO quantum dots (D-QDs) for inhibiting metabolic enzymes and scavenging free radicals, which plays a key role in reducing hyperglycaemia and oxidative stress. Quantitative analysis of radical scavenging and metabolic enzyme inhibition activity of D-QDs demonstrates a size dependent behaviour, where D-QDs with a smaller diameter shows superior activity compared to larger size D-QDs. Considering the size dependence in surface defect formation, the increased surface defect density in smaller size D-QDs can be considered as the reason behind this enhancement. Detailed studies establishing the underlying mechanism behind potent free radical scavenging and enzyme inhibition provides an intense scientific rationale for considering D-QDs to design safe and effective nanomedicine for T2DM.

17.
ACS Appl Mater Interfaces ; 7(14): 7584-98, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25811662

RESUMO

Effective targeting of mitochondria has emerged as an alternative strategy in cancer chemotherapy. However, considering mitochondria's crucial role in cellular energetics, metabolism and signaling, targeting mitochondria with small molecules would lead to severe side effects in cancer patients. Moreover, mitochondrial functions are highly dependent on other cellular organelles like nucleus. Hence, simultaneous targeting of mitochondria and nucleus could lead to more effective anticancer strategy. To achieve this goal, we have developed sub 200 nm particles from dual drug conjugates derived from direct tethering of mitochondria damaging drug (α- tocopheryl succinate) and nucleus damaging drugs (cisplatin, doxorubicin and paclitaxel). These dual drug conjugated nanoparticles were internalized into the acidic lysosomal compartments of the HeLa cervical cancer cells through endocytosis and induced apoptosis through cell cycle arrest. These nanoparticles damaged mitochondrial morphology and triggered the release of cytochrome c. Furthermore, these nanoparticles target nucleus to induce DNA damage, fragment the nuclear morphology and damage the cytoskeletal protein tubulin. Therefore, these dual drug conjugated nanoparticles can be successfully used as a platform technology for simultaneous targeting of multiple subcellular organelles in cancer cells to improve the therapeutic efficacy of the free drugs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Cisplatino/administração & dosagem , Doxorrubicina/administração & dosagem , Células HeLa , Humanos , Nanocápsulas/ultraestrutura , Nanoconjugados/administração & dosagem , Nanoconjugados/química , Nanoconjugados/ultraestrutura , Paclitaxel/administração & dosagem
18.
Int J Nanomedicine ; 10: 7477-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26719690

RESUMO

Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum-palladium bimetallic nanoparticles (Pt-PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2-5 nm, while PdNPs and Pt-PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88% ± 1.73% elemental Pt and 68.96% ± 1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm(-1), attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm(-1), associated with C-H stretching, N-H bending in primary amines, N-O stretching in nitro group, and C-C stretch, respectively. Anticancer activity against HeLa cells showed that Pt-PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt-PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Dioscorea/química , Nanopartículas Metálicas/química , Paládio/química , Extratos Vegetais/farmacologia , Platina/química , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Células HeLa , Humanos , Radical Hidroxila/química , Nanopartículas Metálicas/administração & dosagem , Microscopia Eletrônica de Transmissão , Óxido Nítrico/química , Oxirredução , Extratos Vegetais/química , Espectrometria por Raios X , Superóxidos/química
19.
PLoS One ; 9(9): e106039, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25216353

RESUMO

Diabetes mellitus is a multifactorial metabolic disease characterized by post-prandial hyperglycemia (PPHG). α-amylase and α-glucosidase inhibitors aim to explore novel therapeutic agents. Herein we report the promises of Dioscorea bulbifera and its bioactive principle, diosgenin as novel α-amylase and α-glucosidase inhibitor. Among petroleum ether, ethyl acetate, methanol and 70% ethanol (v/v) extracts of bulbs of D. bulbifera, ethyl acetate extract showed highest inhibition upto 72.06 ± 0.51% and 82.64 ± 2.32% against α-amylase and α-glucosidase respectively. GC-TOF-MS analysis of ethyl acetate extract indicated presence of high diosgenin content. Diosgenin was isolated and identified by FTIR, 1H NMR and 13C NMR and confirmed by HPLC which showed an α-amylase and α-glucosidase inhibition upto 70.94 ± 1.24% and 81.71 ± 3.39%, respectively. Kinetic studies confirmed the uncompetitive mode of binding of diosgenin to α-amylase indicated by lowering of both Km and Vm. Interaction studies revealed the quenching of intrinsic fluorescence of α-amylase in presence of diosgenin. Similarly, circular dichroism spectrometry showed diminished negative humped peaks at 208 nm and 222 nm. Molecular docking indicated hydrogen bonding between carboxyl group of Asp300, while hydrophobic interactions between Tyr62, Trp58, Trp59, Val163, His305 and Gln63 residues of α-amylase. Diosgenin interacted with two catalytic residues (Asp352 and Glu411) from α-glucosidase. This is the first report of its kind that provides an intense scientific rationale for use of diosgenin as novel drug candidate for type II diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/enzimologia , Dioscorea/química , Diosgenina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Animais , Domínio Catalítico , Dicroísmo Circular , Diabetes Mellitus Experimental/patologia , Diosgenina/química , Diosgenina/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Intestinos/enzimologia , Cinética , Camundongos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Espectrometria de Fluorescência , Sus scrofa , alfa-Amilases/metabolismo
20.
PLoS One ; 8(12): e82529, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367520

RESUMO

Gnidia glauca and Dioscorea bulbifera are traditional medicinal plants that can be considered as sources of natural antioxidants. Herein we report the phytochemical analysis and free radical scavenging activity of their sequential extracts. Phenolic and flavonoid content were determined. Scavenging activity was checked against pulse radiolysis generated ABTS(•+) and OH radical, in addition to DPPH, superoxide and hydroxyl radicals by biochemical methods followed by principal component analysis. G. glauca leaf extracts were rich in phenolic and flavonoid content. Ethyl acetate extract of D. bulbifera bulbs and methanol extract of G. glauca stem exhibited excellent scavenging of pulse radiolysis generated ABTS(•+) radical with a second order rate constant of 2.33 × 10(6) and 1.72 × 10(6), respectively. Similarly, methanol extract of G. glauca flower and ethyl acetate extract of D. bulbifera bulb with second order rate constants of 4.48 × 10(6) and 4.46 × 10(6) were found to be potent scavengers of pulse radiolysis generated OH radical. G. glauca leaf and stem showed excellent reducing activity and free radical scavenging activity. HPTLC fingerprinting, carried out in mobile phase, chloroform: toluene: ethanol (4: 4: 1, v/v) showed presence of florescent compound at 366 nm as well as UV active compound at 254 nm. GC-TOF-MS analysis revealed the predominance of diphenyl sulfone as major compound in G. glauca. Significant levels of n-hexadecanoic acid and octadecanoic acid were also present. Diosgenin (C27H42O3) and diosgenin (3á,25R) acetate were present as major phytoconstituents in the extracts of D. bulbifera. G. glauca and D. bulbifera contain significant amounts of phytochemicals with antioxidative properties that can be exploited as a potential source for herbal remedy for oxidative stress induced diseases. These results rationalize further investigation in the potential discovery of new natural bioactive principles from these two important medicinal plants.


Assuntos
Antioxidantes/química , Dioscorea/química , Sequestradores de Radicais Livres/química , Extratos Vegetais/química , Plantas Medicinais/química , Cromatografia Líquida de Alta Pressão , Flavonas/química , Fenol/química , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa