Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047338

RESUMO

The σ1 receptor (σ1-R) is an enigmatic endoplasmic reticulum resident transmembrane protein implicated in a variety of central nervous system disorders and whose agonists have neuroprotective activity. In spite of σ1-R's physio-pathological and pharmacological importance, two of the most important features required to fully understand σ1-R function, namely the receptor endogenous ligand(s) and the molecular mechanism of ligand access to the binding site, have not yet been unequivocally determined. In this work, we performed molecular dynamics (MD) simulations to help clarify the potential route of access of ligand(s) to the σ1-R binding site, on which discordant results had been reported in the literature. Further, we combined computational and experimental procedures (i.e., virtual screening (VS), electron density map fitting and fluorescence titration experiments) to provide indications about the nature of σ1-R endogenous ligand(s). Our MD simulations on human σ1-R suggested that ligands access the binding site through a cavity that opens on the protein surface in contact with the membrane, in agreement with previous experimental studies on σ1-R from Xenopus laevis. Additionally, steroids were found to be among the preferred σ1-R ligands predicted by VS, and 16,17-didehydroprogesterone was shown by fluorescence titration to bind human σ1-R, with significantly higher affinity than the prototypic σ1-R ligand pridopidine in the same essay. These results support the hypothesis that steroids are among the most important physiological σ1-R ligands.


Assuntos
Simulação de Dinâmica Molecular , Receptores sigma , Humanos , Sítios de Ligação , Ligantes , Ligação Proteica , Receptores sigma/metabolismo , Esteroides , Receptor Sigma-1
2.
FASEB J ; 34(6): 7675-7686, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304340

RESUMO

Mutations in mitochondrial transfer RNA (mt-tRNA) genes are responsible for a wide range of syndromes, for which no effective treatment is available. We previously reported that transfection of the nucleotide sequence encoding for the 16-residue ß32_33 peptide from mitochondrial leucyl-tRNA synthetase ameliorates the cell phenotype caused by the mitochondrial tRNA mutations. In this work, we demonstrated that both the ß32_33 peptide linked with the known (L)-Phe-(D)-Arg-(L)-Phe-(L)-Lys (FrFK) mitochondrial penetrating sequence and, strikingly, the ß32_33 peptide per se, are able to penetrate both the plasma and mitochondrial membranes and exert the rescuing activity when exogenously administered to cells bearing the mutations m.3243A > G and m.8344A > G. These mutations are responsible for the most common and severe mt-tRNA-related diseases. In addition, we dissected the molecular determinants of constructs activity by showing that both the order of amino acids along the sequence and presence of positive charges are essential determinants of the peptide activity in cells and mt-tRNA structures stabilization in vitro. In view of future in vivo studies, this information may be required to design of ß32_33 peptide-mimetic derivatives. The ß32_33 and FrFK-ß32_33 peptides are, therefore, promising molecules for the development of therapeutic agents against diseases caused by the mt-tRNA point mutations.


Assuntos
Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Membranas Mitocondriais/metabolismo , Peptídeos/metabolismo , RNA de Transferência/metabolismo , Aminoácidos/metabolismo , Linhagem Celular , Humanos , Mutação Puntual/fisiologia
3.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525510

RESUMO

Huntington disease (HD) is a devastating and presently untreatable neurodegenerative disease characterized by progressively disabling motor and mental manifestations. The sigma-1 receptor (σ1R) is a protein expressed in the central nervous system, whose 3D structure has been recently determined by X-ray crystallography and whose agonists have been shown to have neuroprotective activity in neurodegenerative diseases. To identify therapeutic agents against HD, we have implemented a drug repositioning strategy consisting of: (i) Prediction of the ability of the FDA-approved drugs publicly available through the ZINC database to interact with σ1R by virtual screening, followed by computational docking and visual examination of the 20 highest scoring drugs; and (ii) Assessment of the ability of the six drugs selected by computational analyses to directly bind purified σ1R in vitro by Surface Plasmon Resonance and improve the growth of fibroblasts obtained from HD patients, which is significantly impaired with respect to control cells. All six of the selected drugs proved able to directly bind purified σ1R in vitro and improve the growth of HD cells from both or one HD patient. These results support the validity of the drug repositioning procedure implemented herein for the identification of new therapeutic tools against HD.


Assuntos
Fibroblastos/citologia , Doença de Huntington/metabolismo , Preparações Farmacêuticas/química , Receptores sigma/metabolismo , Adulto , Proliferação de Células , Células Cultivadas , Simulação por Computador , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Doença de Huntington/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Receptores sigma/química , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Receptor Sigma-1
4.
Hum Mol Genet ; 25(5): 903-15, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26721932

RESUMO

Mutations in mitochondrial (mt) genes coding for mt-tRNAs are responsible for a range of syndromes, for which no effective treatment is available. We recently showed that the carboxy-terminal domain (Cterm) of human mt-leucyl tRNA synthetase rescues the pathologic phenotype associated either with the m.3243A>G mutation in mt-tRNA(Leu(UUR)) or with mutations in the mt-tRNA(Ile), both of which are aminoacylated by Class I mt-aminoacyl-tRNA synthetases (mt-aaRSs). Here we show, by using the human transmitochondrial cybrid model, that the Cterm is also able to improve the phenotype caused by the m.8344A>G mutation in mt-tRNA(Lys), aminoacylated by a Class II aaRS. Importantly, we demonstrate that the same rescuing ability is retained by two Cterm-derived short peptides, ß30_31 and ß32_33, which are effective towards both the m.8344A>G and the m.3243A>G mutations. Furthermore, we provide in vitro evidence that these peptides bind with high affinity wild-type and mutant human mt-tRNA(Leu(UUR)) and mt-tRNA(Lys), and stabilize mutant mt-tRNA(Leu(UUR)). In conclusion, we demonstrate that small Cterm-derived peptides can be effective tools to rescue cellular defects caused by mutations in a wide range of mt-tRNAs.


Assuntos
Aminoacil-tRNA Sintetases/genética , Mitocôndrias/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Peptídeos/farmacologia , Mutação Puntual , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Expressão Gênica , Humanos , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Síndrome MELAS/patologia , Síndrome MERRF/genética , Síndrome MERRF/metabolismo , Síndrome MERRF/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Modelos Moleculares , Dados de Sequência Molecular , Osteoblastos/metabolismo , Osteoblastos/patologia , Peptídeos/síntese química , Fenótipo , Domínios Proteicos , Estrutura Secundária de Proteína , RNA de Transferência de Leucina/metabolismo , RNA de Transferência de Lisina/metabolismo , Alinhamento de Sequência
5.
Int J Mol Sci ; 19(5)2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29702562

RESUMO

Vascular endothelial growth factor receptor (VEGFR)-1 exists in different forms, derived from alternative splicing of the same gene. In addition to the transmembrane form, endothelial cells produce a soluble VEGFR-1 (sVEGFR-1) isoform, whereas non-endothelial cells produce both sVEGFR-1 and a different soluble molecule, known as soluble fms-like tyrosine kinase (sFlt)1-14. By binding members of the vascular endothelial growth factor (VEGF) family, the soluble forms reduce the amounts of VEGFs available for the interaction with their transmembrane receptors, thereby negatively regulating VEGFR-mediated signaling. In agreement with this activity, high levels of circulating sVEGFR-1 or sFlt1-14 are associated with different pathological conditions involving vascular dysfunction. Moreover, sVEGFR-1 and sFlt1-14 have an additional role in angiogenesis: they are deposited in the endothelial cell and pericyte extracellular matrix, and interact with cell membrane components. Interaction of sVEGFR-1 with α5β1 integrin on endothelial cell membranes regulates vessel growth, triggering a dynamic, pro-angiogenic phenotype. Interaction of sVEGFR-1/sFlt1-14 with cell membrane glycosphingolipids in lipid rafts controls kidney cell morphology and glomerular barrier functions. These cell⁻matrix contacts represent attractive novel targets for pharmacological intervention in addition to those addressing interactions between VEGFs and their receptors.


Assuntos
Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Endoteliais/química , Células Endoteliais/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Camundongos , Modelos Animais , Transdução de Sinais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/química
6.
Amino Acids ; 49(7): 1147-1157, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28396959

RESUMO

Huntington's disease (HD) or Huntington's chorea is the most common inherited, dominantly transmitted, neurodegenerative disorder. It is caused by increased CAG repeats number in the gene coding for huntingtin (Htt) and characterized by motor, behaviour and psychiatric symptoms, ultimately leading to death. HD patients also exhibit alterations in glucose and energetic metabolism, which result in pronounced weight loss despite sustained calorie intake. Glucose metabolism decreases in the striatum of all the subjects with mutated Htt, but affects symptom presentation only when it drops below a specific threshold. Recent evidence points at defects in glucose uptake by the brain, and especially by neurons, as a relevant component of central glucose hypometabolism in HD patients. Here we review the main features of glucose metabolism and transport in the brain in physiological conditions and how these processes are impaired in HD, and discuss the potential ability of strategies aimed at increasing intracellular energy levels to counteract neurological and motor degeneration in HD patients.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético , Glucose/metabolismo , Doença de Huntington/metabolismo , Transporte Biológico Ativo/genética , Encéfalo/patologia , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Expansão das Repetições de Trinucleotídeos
7.
Biomacromolecules ; 17(2): 514-22, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26686226

RESUMO

A novel human ferritin-based nanocarrier, composed of 24 modified monomers able to auto-assemble into a modified protein cage, was produced and used as selective carrier of anti-tumor payloads. Each modified monomer derives from the genetic fusion of two distinct modules, namely the heavy chain of human ferritin (HFt) and a stabilizing/protective PAS polypeptide sequence rich in proline (P), serine (S), and alanine (A) residues. Two genetically fused protein constructs containing PAS polymers with 40- and 75-residue lengths, respectively, were compared. They were produced and purified as recombinant proteins in Escherichia coli at high yields. Both preparations were highly soluble and stable in vitro as well as in mouse plasma. Size-exclusion chromatography, dynamic light scattering, and transmission electron microscopy results indicated that PASylated ferritins are fully assembled and highly monodispersed. In addition, yields and stability of encapsulated doxorubicin were significantly better for both HFt-PAS proteins than for wild-type HFt. Importantly, PAS sequences considerably prolonged the half-life of HFt in the mouse bloodstream. Finally, our doxorubicin-loaded nanocages preserved the pharmacological activity of the drug. Taken together, these results indicate that both of the developed HFt-PAS fusion proteins are promising nanocarriers for future applications in cancer therapy.


Assuntos
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Nanocápsulas/química , Alanina/química , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Ferritinas/química , Meia-Vida , Humanos , Camundongos Endogâmicos BALB C , Peptídeos/química , Polietilenoglicóis/química , Prolina/química , Proteínas Recombinantes de Fusão/química , Serina/química
8.
Biochim Biophys Acta ; 1843(12): 3065-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25261707

RESUMO

We have previously established a yeast model of mitochondrial (mt) diseases. We showed that defective respiratory phenotypes due to point-mutations in mt tRNA(Leu(UUR)), tRNA(Ile) and tRNA(Val) could be relieved by overexpression of both cognate and non-cognate nuclearly encoded mt aminoacyl-tRNA synthetases (aaRS) LeuRS, IleRS and ValRS. More recently, we showed that the isolated carboxy-terminal domain (Cterm) of yeast mt LeuRS, and even short peptides derived from the human Cterm, have the same suppressing abilities as the whole enzymes. In this work, we extend these results by investigating the activity of a number of mt aaRS from either class I or II towards a panel of mt tRNAs. The Cterm of both human and yeast mt LeuRS has the same spectrum of activity as mt aaRS belonging to class I and subclass a, which is the most extensive among the whole enzymes. Yeast Cterm is demonstrated to be endowed with mt targeting activity. Importantly, peptide fragments ß30_31 and ß32_33, derived from the human Cterm, have even higher efficiency as well as wider spectrum of activity, thus opening new avenues for therapeutic intervention. Bind-shifting experiments show that the ß30_31 peptide directly interacts with human mt tRNA(Leu(UUR)) and tRNA(Ile), suggesting that the rescuing activity of isolated peptide fragments is mediated by a chaperone-like mechanism. Wide-range suppression appears to be idiosyncratic of LeuRS and its fragments, since it is not shared by Cterminal regions derived from human mt IleRS or ValRS, which are expected to have very different structures and interactions with tRNAs.

9.
Plant Biotechnol J ; 13(2): 235-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25283551

RESUMO

Plants are promising hosts for the production of monoclonal antibodies (mAbs). However, proteolytic degradation of antibodies produced both in stable transgenic plants and using transient expression systems is still a major issue for efficient high-yield recombinant protein accumulation. In this work, we have performed a detailed study of the degradation profiles of two human IgG1 mAbs produced in plants: an anti-HIV mAb 2G12 and a tumour-targeting mAb H10. Even though they use different light chains (κ and λ, respectively), the fragmentation pattern of both antibodies was similar. The majority of Ig fragments result from proteolytic degradation, but there are only a limited number of plant proteolytic cleavage events in the immunoglobulin light and heavy chains. All of the cleavage sites identified were in the proximity of interdomain regions and occurred at each interdomain site, with the exception of the VL /CL interface in mAb H10 λ light chain. Cleavage site sequences were analysed, and residue patterns characteristic of proteolytic enzymes substrates were identified. The results of this work help to define common degradation events in plant-produced mAbs and raise the possibility of predicting antibody degradation patterns 'a priori' and designing novel stabilization strategies by site-specific mutagenesis.


Assuntos
Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Nicotiana/genética , Proteólise , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Glicosilação , Immunoblotting , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Análise de Sequência de Proteína
10.
Proteins ; 82(12): 3437-49, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25257552

RESUMO

Serine hydroxymethyltransferases (SHMTs) play an essential role in one-carbon unit metabolism and are used in biomimetic reactions. We determined the crystal structure of free (apo) and pyridoxal-5'-phosphate-bound (holo) SHMT from Methanocaldococcus jannaschii, the first from a hyperthermophile, from the archaea domain of life and that uses H4MPT as a cofactor, at 2.83 and 3.0 Å resolution, respectively. Idiosyncratic features were observed that are likely to contribute to structure stabilization. At the dimer interface, the C-terminal region folds in a unique fashion with respect to SHMTs from eubacteria and eukarya. At the active site, the conserved tyrosine does not make a cation-π interaction with an arginine like that observed in all other SHMT structures, but establishes an amide-aromatic interaction with Asn257, at a different sequence position. This asparagine residue is conserved and occurs almost exclusively in (hyper)thermophile SHMTs. This led us to formulate the hypothesis that removal of frustrated interactions (such as the Arg-Tyr cation-π interaction occurring in mesophile SHMTs) is an additional strategy of adaptation to high temperature. Both peculiar features may be tested by designing enzyme variants potentially endowed with improved stability for applications in biomimetic processes.


Assuntos
Proteínas Arqueais/química , Glicina Hidroximetiltransferase/química , Methanocaldococcus/enzimologia , Modelos Moleculares , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Asparagina/química , Domínio Catalítico , Dimerização , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Temperatura Alta , Ligantes , Methanocaldococcus/crescimento & desenvolvimento , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Tirosina/química
11.
Hum Mol Genet ; 21(1): 85-100, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21945886

RESUMO

The genetic and epigenetic factors underlying the variable penetrance of homoplasmic mitochondrial DNA mutations are poorly understood. We investigated a 16-year-old patient with hypertrophic cardiomyopathy harboring a homoplasmic m.4277T>C mutation in the mt-tRNA(Ile) (MTTI) gene. Skeletal muscle showed multiple respiratory chain enzyme abnormalities and a decreased steady-state level of the mutated mt-tRNA(Ile). Transmitochondrial cybrids grown on galactose medium demonstrated a functional effect of this mutation on cell viability, confirming pathogenicity. These findings were reproduced in transmitochondrial cybrids, harboring a previously described homoplasmic m.4300A>G MTTI mutation. The pathogenic role of the m.4277T>C mutation may be ascribed to misfolding of the mt-tRNA molecule, as demonstrated by the altered electrophoretic migration of the mutated mt-tRNA. Indeed, structure and sequence analyses suggest that thymidine at position 4277 of mt-tRNA(Ile) is involved in a conserved tertiary interaction with thymidine at position 4306. Interestingly, the mutation showed variable penetrance within family members, with skeletal muscle from the patient's clinically unaffected mother demonstrating normal muscle respiratory chain activities and steady-state levels of mt-tRNA(Ile), while homoplasmic for the m.4277T>C mutation. Analysis of mitochondrial isoleucyl-tRNA synthetase revealed significantly higher expression levels in skeletal muscle and fibroblasts of the unaffected mother when compared with the proband, while the transient over-expression of the IARS2 gene in patient transmitochondrial cybrids improved cell viability. This is the first observation that constitutively high levels of aminoacyl-tRNA synthetases (aaRSs) in human tissues prevent the phenotypic expression of a homoplasmic mt-tRNA point mutation. These findings extend previous observations on aaRSs therapeutic effects in yeast and human.


Assuntos
Cardiomiopatia Hipertrófica/enzimologia , Cardiomiopatia Hipertrófica/genética , Isoleucina-tRNA Ligase/metabolismo , Penetrância , Mutação Puntual , RNA de Transferência de Isoleucina/genética , Adolescente , Sequência de Bases , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Isoleucina-tRNA Ligase/genética , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , RNA de Transferência de Isoleucina/metabolismo
12.
FEBS Open Bio ; 14(7): 1040-1056, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38783588

RESUMO

Allostery is an important property of biological macromolecules which regulates diverse biological functions such as catalysis, signal transduction, transport, and molecular recognition. However, the concept was expressed using two different definitions by J. Monod and, over time, more have been added by different authors, making it fuzzy. Here, we reviewed the different meanings of allostery in the current literature and found that it has been used to indicate that the function of a protein is regulated by heterotropic ligands, and/or that the binding of ligands and substrates presents homotropic positive or negative cooperativity, whatever the hypothesized or demonstrated reaction mechanism might be. Thus, proteins defined to be allosteric include not only those that obey the two-state concerted model, but also those that obey different reaction mechanisms such as ligand-induced fit, possibly coupled to sequential structure changes, and ligand-linked dissociation-association. Since each reaction mechanism requires its own mathematical description and is defined by it, there are many possible 'allosteries'. This lack of clarity is made even fuzzier by the fact that the reaction mechanism is often assigned imprecisely and/or implicitly in the absence of the necessary experimental evidence. In this review, we examine a list of proteins that have been defined to be allosteric and attempt to assign a reaction mechanism to as many as possible.


Assuntos
Proteínas , Regulação Alostérica , Ligantes , Proteínas/metabolismo , Proteínas/química , Humanos , Ligação Proteica , Modelos Moleculares
13.
RNA ; 17(11): 1983-96, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21914842

RESUMO

Previous work has demonstrated the usefulness of the yeast model to investigate the molecular mechanisms underlying defects due to base substitutions in mitochondrial tRNA genes, and to identify suppressing molecules endowed with potential clinical relevance. The present paper extends these investigations to two human equivalent yeast mutations located at positions 32 and 33 in the anticodon loop of tRNA(Ile). Notwithstanding the proximity of the two T>C base substitutions, the effects of these mutations have been found to be quite different in yeast, as they are in human. The T32C substitution has a very severe effect in yeast, consisting in a complete inhibition of growth on nonfermentable substrates. Conversely, respiratory defects caused by the T33C mutation could only be observed in a defined genetic context. Analyses of available sequences and selected tRNA three-dimensional structures were performed to provide explanations for the different behavior of these adjacent mutations. Examination of the effects of previously identified suppressors demonstrated that overexpression of the TUF1 gene did not rescue the defective phenotypes determined by either mutation, possibly as a consequence of the lack of interactions between EF-Tu and the tRNA anticodon arm in known structures. On the contrary, both the cognate IleRS and the noncognate LeuRS and ValRS are endowed with suppressing activities toward both mutations. This allows us to extend to the tRNA(Ile) mutants the cross-suppression activity of aminoacyl-tRNA synthetases previously demonstrated for tRNA(Leu) and tRNA(Val) mutants.


Assuntos
Anticódon/química , Conformação de Ácido Nucleico , RNA de Transferência de Isoleucina/química , RNA/química , Saccharomyces cerevisiae/química , Anticódon/genética , Sequência de Bases , Genes Supressores , Humanos , Dados de Sequência Molecular , Mutação , Fenótipo , RNA/genética , RNA Mitocondrial , RNA de Transferência de Isoleucina/genética , Saccharomyces cerevisiae/genética
14.
Plant Physiol Biochem ; 194: 236-245, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436414

RESUMO

Sirtuins are part of a gene family of NAD-dependent deacylases that act on histone and non-histone proteins and control a variety of activities in all living organisms. Their roles are mainly related to energy metabolism and include lifetime regulation, DNA repair, stress resistance, and proliferation. A large amount of knowledge concerning animal sirtuins is available, but data about their plant counterparts are scarce. Plants possess few sirtuins that have, like in animals, a recognized role in stress defense and metabolism regulation. However, engagement in proliferation control, which has been demonstrated for mammalian sirtuins, has not been reported for plant sirtuins so far. In this work, srt1 and srt2 Arabidopsis mutant seedlings have been used to evaluate in vivo the role of sirtuins in cell proliferation and regulation of glutamate dehydrogenase, an enzyme demonstrated to be involved in the control of cell cycle in SIRT4-defective human cells. Moreover, bioinformatic analyses have been performed to elucidate sequence, structure, and function relationships between Arabidopsis sirtuins and between each of them and the closest mammalian homolog. We found that cell proliferation and GDH activity are higher in mutant seedlings, suggesting that both sirtuins exert a physiological inhibitory role in these processes. In addition, mutant seedlings show plant growth and root system improvement, in line with metabolic data. Our data also indicate that utilization of an easy to manipulate organism, such as Arabidopsis plant, can help to shed light on the molecular mechanisms underlying the function of genes present in interkingdom species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sirtuínas , Animais , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferação de Células , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Histonas , Mamíferos/metabolismo , Sirtuínas/genética , Sirtuínas/química , Sirtuínas/metabolismo
15.
Plant Physiol Biochem ; 170: 123-132, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871830

RESUMO

Polyamine acetylation has an important regulatory role in polyamine metabolism. It is catalysed by GCN5-related N-acetyltransferases, which transfer acetyl groups from acetyl-coenzyme A to the primary amino groups of spermidine, spermine (Spm), or other polyamines and diamines, as was shown for the human Spermidine/Spermine N1-acetyltransferase 1 (HsSSAT1). SSAT homologues specific for thialysine, a cysteine-derived lysine analogue, were also identified (e.g., HsSSAT2). Two HsSSAT1 homologues are present in Arabidopsis, namely N-acetyltransferase activity (AtNATA) 1 and 2. AtNATA1 was previously shown to be specific for 1,3-diaminopropane, ornithine, putrescine and thialysine, rather than Spm and spermidine. In the present study, in an attempt to find a plant Spm-specific SSAT, AtNATA2 was expressed in a heterologous bacterial system and catalytic properties of the recombinant protein were determined. Data indicate that recombinant AtNATA2 preferentially acetylates 1,3-diaminopropane and thialysine, throwing further light on AtNATA1 substrate specificity. Structural analyses evidenced that the preference of AtNATA1, AtNATA2 and HsSSAT2 for short amine substrates can be ascribed to different main-chain conformation or substitution of HsSSAT1 residues interacting with Spm distal regions. Moreover, gene expression studies evidenced that AtNATA1 gene, but not AtNATA2, is up-regulated by cytokinins, thermospermine and Spm, suggesting the existence of a link between AtNATAs and N1-acetyl-Spm metabolism. This study provides insights into polyamine metabolism and structural determinants of substrate specificity of non Spm-specific SSAT homologues.


Assuntos
Arabidopsis , Cisteína , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína/análogos & derivados , Cisteína/metabolismo , Diaminas , Espermina
16.
Biomolecules ; 12(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36359000

RESUMO

Allostery is a property of biological macromolecules featuring cooperative ligand binding and regulation of ligand affinity by effectors. The definition was introduced by Monod and Jacob in 1963, and formally developed as the "concerted model" by Monod, Wyman, and Changeux in 1965. Since its inception, this model of cooperativity was seen as distinct from and not reducible to the "sequential model" originally formulated by Pauling in 1935, which was developed further by Koshland, Nemethy, and Filmer in 1966. However, it is difficult to decide which model is more appropriate from equilibrium or kinetics measurements alone. In this paper, we examine several cooperative proteins whose functional behavior, whether sequential or concerted, is established, and offer a combined approach based on functional and structural analysis. We find that isologous, mostly helical interfaces are common in cooperative proteins regardless of their mechanism. On the other hand, the relative contribution of tertiary and quaternary structural changes, as well as the asymmetry in the liganded state, may help distinguish between the two mechanisms.


Assuntos
Proteínas , Ligantes , Regulação Alostérica , Cinética
17.
FEBS J ; 289(1): 183-198, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34252269

RESUMO

Neuropilin-1 (NRP-1) is a semaphorin receptor involved in neuron guidance, and a co-receptor for selected isoforms of the vascular endothelial growth factor (VEGF) family. NRP-1 binding to several VEGF-A isoforms promotes growth factor interaction with VEGF receptor (VEGFR)-2, increasing receptor phosphorylation. Additionally, NRP-1 directly interacts with VEGFR-1, but this interaction competes with NRP-1 binding to VEGF-A165 and does not enhance VEGFR-1 activation. In this work, we investigated in detail the role of NRP-1 interaction with the soluble isoform of VEGFR-1 (sVEGFR-1) in angiogenesis. sVEGFR-1 acts both as a decoy receptor for VEGFs and as an extracellular matrix protein directly binding to α5ß1 integrin on endothelial cells. By combining cell adhesion assays and surface plasmon resonance experiments on purified proteins, we found that sVEGFR-1/NRP-1 interaction is required both for α5ß1 integrin binding to sVEGFR-1 and for endothelial cell adhesion to a sVEGFR-1-containing matrix. We also found that a previously reported anti-angiogenic peptide (Flt2-11 ), which maps in the second VEGFR-1 Ig-like domain, specifically binds NRP-1 and inhibits NRP-1/sVEGFR-1 interaction, a process that likely contributes to its anti-angiogenic activity. In view of potential translational applications, we developed a five-residue-long peptide, derived from Flt2-11 , which has the same ability as the parent Flt2-11 peptide to inhibit cell adhesion to, and migration towards, sVEGFR-1. Therefore, the Flt2-5 peptide represents a potential anti-angiogenic compound per se, as well as an attractive lead for the development of novel angiogenesis inhibitors acting with a different mechanism with respect to currently used therapeutics, which interfere with VEGF-A165 binding.


Assuntos
Adesão Celular/genética , Neuropilina-1/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Movimento Celular/genética , Células Endoteliais/metabolismo , Humanos , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , Neurônios/metabolismo , Fosforilação/genética , Ligação Proteica/genética , Transdução de Sinais/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
18.
J Pers Med ; 11(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34945781

RESUMO

Huntington Disease (HD) is a dominant, lethal neurodegenerative disorder caused by the abnormal expansion (>35 copies) of a CAG triplet located in exon 1 of the HTT gene encoding the huntingtin protein (Htt). Mutated Htt (mHtt) easily aggregates, thereby inducing ER stress that in turn leads to neuronal injury and apoptosis. Therefore, both the inhibition of mHtt aggregate formation and the acceleration of mHtt degradation represent attractive strategies to delay HD progression, and even for HD treatment. Here, we describe the mechanism underlying mHtt degradation by the ubiquitin-proteasome system (UPS), which has been shown to play a more important role than the autophagy-lysosomal pathway. In particular, we focus on E3 ligase proteins involved in the UPS and detail their structure-function relationships. In this framework, we discuss the possible exploitation of PROteolysis TArgeting Chimeras (PROTACs) for HD therapy. PROTACs are heterobifunctional small molecules that comprise two different ligands joined by an appropriate linker; one of the ligands is specific for a selected E3 ubiquitin ligase, the other ligand is able to recruit a target protein of interest, in this case mHtt. As a consequence of PROTAC binding, mHtt and the E3 ubiquitin ligase can be brought to a relative position that allows mHtt to be ubiquitinated and, ultimately, allows a reduction in the amount of mHtt in the cell.

19.
Comput Struct Biotechnol J ; 19: 5762-5790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765093

RESUMO

We review the current applications of artificial intelligence (AI) in functional genomics. The recent explosion of AI follows the remarkable achievements made possible by "deep learning", along with a burst of "big data" that can meet its hunger. Biology is about to overthrow astronomy as the paradigmatic representative of big data producer. This has been made possible by huge advancements in the field of high throughput technologies, applied to determine how the individual components of a biological system work together to accomplish different processes. The disciplines contributing to this bulk of data are collectively known as functional genomics. They consist in studies of: i) the information contained in the DNA (genomics); ii) the modifications that DNA can reversibly undergo (epigenomics); iii) the RNA transcripts originated by a genome (transcriptomics); iv) the ensemble of chemical modifications decorating different types of RNA transcripts (epitranscriptomics); v) the products of protein-coding transcripts (proteomics); and vi) the small molecules produced from cell metabolism (metabolomics) present in an organism or system at a given time, in physiological or pathological conditions. After reviewing main applications of AI in functional genomics, we discuss important accompanying issues, including ethical, legal and economic issues and the importance of explainability.

20.
Life (Basel) ; 11(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34357047

RESUMO

The m.3243A>G mutation within the mitochondrial mt-tRNALeu(UUR) gene is the most prevalent variant linked to mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome. This pathogenic mutation causes severe impairment of mitochondrial protein synthesis due to alterations of the mutated tRNA, such as reduced aminoacylation and a lack of post-transcriptional modification. In transmitochondrial cybrids, overexpression of human mitochondrial leucyl-tRNA synthetase (LARS2) has proven effective in rescuing the phenotype associated with m.3243A>G substitution. The rescuing activity resides in the carboxy-terminal domain (Cterm) of the enzyme; however, the precise molecular mechanisms underlying this process have not been fully elucidated. To deepen our knowledge on the rescuing mechanisms, we demonstrated the interactions of the Cterm with mutated mt-tRNALeu(UUR) and its precursor in MELAS cybrids. Further, the effect of Cterm expression on mitochondrial functions was evaluated. We found that Cterm ameliorates de novo mitochondrial protein synthesis, whilst it has no effect on mt-tRNALeu(UUR) steady-state levels and aminoacylation. Despite the complete recovery of cell viability and the increase in mitochondrial translation, Cterm-overexpressing cybrids were not able to recover bioenergetic competence. These data suggest that, in our MELAS cell model, the beneficial effect of Cterm may be mediated by factors that are independent of the mitochondrial bioenergetics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa