Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Glob Chang Biol ; 27(15): 3657-3680, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33982340

RESUMO

Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.


Assuntos
Ecossistema , Floresta Úmida , África , Biomassa , Florestas , Raízes de Plantas , Solo , América do Sul , Árvores , Clima Tropical
2.
Glob Chang Biol ; 25(8): 2661-2677, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31006150

RESUMO

Terrestrial net primary productivity (NPP) is an important metric of ecosystem functioning; however, there are little empirical data on the NPP of human-modified ecosystems, particularly smallholder, perennial crops like cocoa (Theobroma cacao), which are extensive across the tropics. Human-appropriated NPP (HANPP) is a measure of the proportion of a natural system's NPP that has either been reduced through land-use change or harvested directly and, previously, has been calculated to estimate the scale of the human impact on the biosphere. Additionally, human modification can create shifts in NPP allocation and decomposition, with concomitant impacts on the carbon cycle. This study presents the results of 3 years of intensive monitoring of forest and smallholder cocoa farms across disturbance, management intensity, distance from forest and farm age gradients. We measured among the highest reported NPP values in tropical forest, 17.57 ± 2.1 and 17.7 ± 1.6 Mg C ha-1  year-1 for intact and logged forest, respectively; however, the average NPP of cocoa farms was still higher, 18.8 ± 2.5 Mg C ha-1  year-1 , which we found was driven by cocoa pod production. We found a dramatic shift in litterfall residence times, where cocoa leaves decomposed more slowly than forest leaves and shade tree litterfall decomposed considerably faster, indicating significant changes in rates of nutrient cycling. The average HANPP value for all cocoa farms was 2.1 ± 1.1 Mg C ha-1  year-1 ; however, depending on the density of shade trees, it ranged from -4.6 to 5.2 Mg C ha-1  year-1 . Therefore, rather than being related to cocoa yield, HANPP was reduced by maintaining higher shade levels. Across our monitored farms, 18.9% of farm NPP was harvested (i.e., whole cocoa pods) and only 1.1% (i.e., cocoa beans) was removed from the system, suggesting that the scale of HANPP in smallholder cocoa agroforestry systems is relatively small.


Assuntos
Cacau , Ecossistema , África Ocidental , Carbono , Fazendas , Florestas , Humanos , Árvores
3.
Glob Chang Biol ; 22(4): 1406-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26499288

RESUMO

We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha(-1) vs. 21 and 28 Mg ha(-1) for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets.


Assuntos
Biomassa , Mapas como Assunto , Conjuntos de Dados como Assunto , Modelos Teóricos , Árvores , Clima Tropical
4.
J Perinat Med ; 44(6): 663-8, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26352080

RESUMO

AIM: Inhaled nitric oxide (iNO) is used to treat neonates with hypoxic respiratory failure (HRF). The aim of this study was to determine clinical characteristics and factors associated with non-response to iNO therapy that may assist in clinical management and weaning strategies. METHODS: Retrospective chart review. The study cohort included gestational age ≥34 weeks' infants with acute HRF who received iNO within 7 days of birth. Subjects were stratified as responders or non-responders to iNO. Non-responders were defined as infants with failure to improve their PaO2 >20 mm Hg within 6 h of iNO initiation, need for extracorporeal membrane oxygenation (ECMO), or mortality. Clinical and laboratory characteristics were then compared between groups. RESULTS: Forty four subjects were included. There were 31 responders and 13 non-responders to iNO therapy. Regression analysis showed significant correlation between a non-response to iNO therapy and changes in PaO2 and pH levels. We found for every 10 mm Hg decrease in PaO2 immediate post-iNO therapy there is a 17.5% decrease in the likelihood of responding to iNO (odds ratio [OR] 0.98, P=0.012). Similarly, for every 0.15 point decrease in pH, there is a 16.3% increased chance of not responding to iNO therapy (OR 1.16, P=0.002). The need for pressor support prior to iNO initiation was also found to be associated with a non-response (OR 2. 94, P=0.034). CONCLUSIONS: Hypotension requiring treatment with pressors at the time of iNO therapy, as well as changes in pH and PaO2 after iNO initiation can be used as early clinical predictors to identify patients quickly who may be iNO non-responders.


Assuntos
Broncodilatadores/uso terapêutico , Óxido Nítrico/uso terapêutico , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Administração por Inalação , Oxigenação por Membrana Extracorpórea , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Modelos Logísticos , Prognóstico , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico , Síndrome do Desconforto Respiratório do Recém-Nascido/mortalidade , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Estudos Retrospectivos , Falha de Tratamento
5.
Proc Natl Acad Sci U S A ; 108(24): 9899-904, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21628575

RESUMO

Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a "benchmark" map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ± 6% to ± 53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ± 5% and ca. ± 1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete.


Assuntos
Carbono/metabolismo , Conservação dos Recursos Naturais/métodos , Árvores/metabolismo , Clima Tropical , África Subsaariana , Sudeste Asiático , Biomassa , Mudança Climática , Ecossistema , Geografia , América Latina , Modelos Biológicos , Árvores/crescimento & desenvolvimento
6.
J Perinat Med ; 42(6): 705-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25222594

RESUMO

AIMS: It remains unclear if mode of delivery can have any impact on the neonatal brain. Our aim was to determine in term newborns any differences based on mode of delivery in either neuronal injury biomarkers, phosphorylated axonal neurofilament heavy chain (pNF-H) and ubiquitin C-terminal hydrolase (UCHL1), or brain oxygenation values, regional cerebral tissue oxygen saturation (CrSO2) and cerebral fractional tissue oxygen extraction (CFOE). METHODS: An Institutional Review Board approved prospective observational pilot study of well newborns. Serum pNF-H and UCHL1 levels were measured on the day following delivery. CrSO2 values along with CFOE values were also measured using near-infrared spectroscopy (NIRS) and pulse oximetry. RESULTS: There were 22 subjects, 15 born vaginally and seven born by cesarean section. No difference was found in mean pNF-H (107.9±54.3 pg/mL vs. 120.2±43.3 pg/mL, P=0.66) or mean UCHL1 (4.0±3.5 pg/mL vs. 3.0±2.2 pg/mL, P=0.68). No difference was found in mean CrSO2 (80.8±5.3% vs. 80.8±5.6%, P=0.99) or mean CFOE (0.17±0.06 vs. 0.15±0.08, P=0.51). CONCLUSIONS: We found no difference in neuronal injury markers between term neonates born vaginally compared to those born by cesarean section. From a neurologic standpoint, this supports current obstetric practice guidelines that emphasize vaginal birth as the preferred delivery method whenever possible.


Assuntos
Lesões Encefálicas/etiologia , Encéfalo/metabolismo , Cesárea/efeitos adversos , Proteínas de Neurofilamentos/sangue , Oxigênio/metabolismo , Nascimento a Termo , Ubiquitina Tiolesterase/sangue , Biomarcadores/metabolismo , Lesões Encefálicas/diagnóstico , Lesões Encefálicas/metabolismo , Parto Obstétrico , Feminino , Humanos , Recém-Nascido , Masculino , Oximetria , Projetos Piloto , Gravidez , Estudos Prospectivos , Espectroscopia de Luz Próxima ao Infravermelho
7.
Commun Earth Environ ; 4(1): 298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665193

RESUMO

Both carbon dioxide uptake and albedo of the land surface affect global climate. However, climate change mitigation by increasing carbon uptake can cause a warming trade-off by decreasing albedo, with most research focusing on afforestation and its interaction with snow. Here, we present carbon uptake and albedo observations from 176 globally distributed flux stations. We demonstrate a gradual decline in maximum achievable annual albedo as carbon uptake increases, even within subgroups of non-forest and snow-free ecosystems. Based on a paired-site permutation approach, we quantify the likely impact of land use on carbon uptake and albedo. Shifting to the maximum attainable carbon uptake at each site would likely cause moderate net global warming for the first approximately 20 years, followed by a strong cooling effect. A balanced policy co-optimizing carbon uptake and albedo is possible that avoids warming on any timescale, but results in a weaker long-term cooling effect.

8.
Sci Rep ; 12(1): 19653, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385148

RESUMO

Anthropogenic climate change causes more frequent and intense fluctuations in the El Niño Southern Oscillation (ENSO). Understanding the effects of ENSO on agricultural systems is crucial for predicting and ameliorating impacts on lives and livelihoods, particularly in perennial tree crops, which may show both instantaneous and delayed responses. Using cocoa production in Ghana as a model system, we analyse the impact of ENSO on annual production and climate over the last 70 years. We report that in recent decades, El Niño years experience reductions in cocoa production followed by several years of increased production, and that this pattern has significantly shifted compared with prior to the 1980s. ENSO phase appears to affect the climate in Ghana, and over the same time period, we see corresponding significant shifts in the climatic conditions resulting from ENSO extremes, with increasing temperature and water stress. We attribute these changes to anthropogenic climate change, and our results illustrate the big data analyses necessary to improve understanding of perennial crop responses to climate change in general, and climate extremes in particular.


Assuntos
Mudança Climática , Árvores , El Niño Oscilação Sul , Produtos Agrícolas , Temperatura
9.
New Phytol ; 187(3): 631-46, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20659252

RESUMO

*The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. *We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. *In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. *These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.


Assuntos
Secas , Árvores/crescimento & desenvolvimento , Clima Tropical , Adaptação Fisiológica , Biomassa , Brasil , Ecossistema , Modelos Biológicos , Caules de Planta/crescimento & desenvolvimento , Chuva , Estresse Fisiológico , Fatores de Tempo , Água , Madeira/crescimento & desenvolvimento
10.
Sci Adv ; 5(10): eaax2546, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31692892

RESUMO

Intact tropical forests, free from substantial anthropogenic influence, store and sequester large amounts of atmospheric carbon but are currently neglected in international climate policy. We show that between 2000 and 2013, direct clearance of intact tropical forest areas accounted for 3.2% of gross carbon emissions from all deforestation across the pantropics. However, full carbon accounting requires the consideration of forgone carbon sequestration, selective logging, edge effects, and defaunation. When these factors were considered, the net carbon impact resulting from intact tropical forest loss between 2000 and 2013 increased by a factor of 6 (626%), from 0.34 (0.37 to 0.21) to 2.12 (2.85 to 1.00) petagrams of carbon (equivalent to approximately 2 years of global land use change emissions). The climate mitigation value of conserving the 549 million ha of tropical forest that remains intact is therefore significant but will soon dwindle if their rate of loss continues to accelerate.


Assuntos
Carbono/metabolismo , Conservação dos Recursos Naturais , Florestas , Geografia , Clima Tropical
11.
PLoS One ; 11(6): e0156481, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27276218

RESUMO

Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380-416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD+ competitiveness in tropical floodplain landscapes; and, providing a robust approach for identifying and targeting limited REDD+ funds.


Assuntos
Arecaceae/crescimento & desenvolvimento , Conservação dos Recursos Naturais/economia , Produção Agrícola/economia , Florestas , Bornéu
12.
Carbon Balance Manag ; 5: 7, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21092321

RESUMO

Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG) emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics.

13.
Science ; 323(5919): 1344-7, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19265020

RESUMO

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.


Assuntos
Biomassa , Secas , Ecossistema , Árvores , Atmosfera , Brasil , Carbono , Dióxido de Carbono , Clima , América do Sul , Árvores/crescimento & desenvolvimento , Clima Tropical
14.
Trends Ecol Evol ; 23(10): 538-45, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18775582

RESUMO

Oil palm is one of the world's most rapidly increasing crops. We assess its contribution to tropical deforestation and review its biodiversity value. Oil palm has replaced large areas of forest in Southeast Asia, but land-cover change statistics alone do not allow an assessment of where it has driven forest clearance and where it has simply followed it. Oil palm plantations support much fewer species than do forests and often also fewer than other tree crops. Further negative impacts include habitat fragmentation and pollution, including greenhouse gas emissions. With rising demand for vegetable oils and biofuels, and strong overlap between areas suitable for oil palm and those of most importance for biodiversity, substantial biodiversity losses will only be averted if future oil palm expansion is managed to avoid deforestation.


Assuntos
Arecaceae/fisiologia , Biodiversidade , Óleos de Plantas , Conservação dos Recursos Naturais , Produtos Agrícolas , Óleo de Palmeira
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa