RESUMO
BACKGROUND: Behavioral traits such as sociability, emotional reactivity and aggressiveness are major factors in animal adaptation to breeding conditions. In order to investigate the genetic control of these traits as well as their relationships with production traits, a study was undertaken on a large second generation cross (F2) between two lines of Japanese Quail divergently selected on their social reinstatement behavior. All the birds were measured for several social behaviors (social reinstatement, response to social isolation, sexual motivation, aggression), behaviors measuring the emotional reactivity of the birds (reaction to an unknown object, tonic immobility reaction), and production traits (body weight and egg production). RESULTS: We report the results of the first genome-wide QTL detection based on a medium density SNP panel obtained from whole genome sequencing of a pool of individuals from each divergent line. A genetic map was constructed using 2145 markers among which 1479 could be positioned on 28 different linkage groups. The sex-averaged linkage map spanned a total of 3057 cM with an average marker spacing of 2.1 cM. With the exception of a few regions, the marker order was the same in Japanese Quail and the chicken, which confirmed a well conserved synteny between the two species. The linkage analyses performed using QTLMAP software revealed a total of 45 QTLs related either to behavioral (23) or production (22) traits. The most numerous QTLs (15) concerned social motivation traits. Interestingly, our results pinpointed putative pleiotropic regions which controlled emotional reactivity and body-weight of birds (on CJA5 and CJA8) or their social motivation and the onset of egg laying (on CJA19). CONCLUSION: This study identified several QTL regions for social and emotional behaviors in the Quail. Further research will be needed to refine the QTL and confirm or refute the role of candidate genes, which were suggested by bioinformatics analysis. It can be hoped that the identification of genes and polymorphisms related to behavioral traits in the quail will have further applications for other poultry species (especially the chicken) and will contribute to solving animal welfare issues in poultry production.
Assuntos
Coturnix/genética , Locos de Características Quantitativas , Animais , Galinhas/genética , Mapeamento Cromossômico , Ligação Genética , Genoma , Polimorfismo de Nucleotídeo Único , Reprodução/genética , Análise de Sequência de DNA , Comportamento Sexual Animal , Comportamento SocialRESUMO
BACKGROUND: With dense genotyping, many choices exist for methods to detect quantitative trait loci (QTL) in livestock populations. However, no across-species study has been conducted on the performance of different methods using real data. We compared three methods that correct for relatedness either implicitly or explicitly: linkage and linkage disequilibrium haplotype-based analysis (LDLA), efficient mixed-model association (EMMA) analysis, and Bayesian whole-genome regression (BayesC). We analyzed one chromosome in each of five datasets (dairy cattle, beef cattle, sheep, horses, and pigs) using real genotypes based on dense single nucleotide polymorphisms and phenotypes. The P values corrected for multiple testing or Bayes factors greater than 150 were considered to be significant. To complete the real data study, we also simulated quantitative trait loci (QTL) for the same datasets based on the real genotypes. Several scenarios were chosen, with different QTL effects and linkage disequilibrium patterns. A pseudo-null statistical distribution was chosen to make the significance thresholds comparable across methods. RESULTS: For the real data, the three methods generally agreed within 1 or 2 cM for the locations of QTL regions and disagreed when no signals were significant (e.g. in pigs). For certain datasets, LDLA had more significant signals than EMMA or BayesC, but they were concentrated around the same peaks. Therefore, the three methods detected approximately the same number of QTL regions. For the simulated data, LDLA was slightly less powerful and accurate than either EMMA or BayesC but this depended strongly on how thresholds were set in the simulations. CONCLUSIONS: All three methods performed similarly for real and simulated data. No method was clearly superior across all datasets or for any particular dataset. For computational efficiency and ease of interpretation, EMMA is recommended, but using more than one method is suggested.
Assuntos
Mapeamento Cromossômico/métodos , Marcadores Genéticos , Genoma , Gado/genética , Locos de Características Quantitativas/genética , Animais , Teorema de Bayes , Bovinos/genética , Ligação Genética , Genótipo , Haplótipos/genética , Cavalos/genética , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Sus scrofa/genéticaRESUMO
BACKGROUND: Current trends in sheep farming practices rely on animals with a greater level of behavioral autonomy than before, a phenotype that actively contributes to the sustainability of animal production. Social reactivity and reactivity to humans are relevant behavioral traits in sheep, known for their strong gregariousness and weak tolerance to handling, which have previously been reported with moderate to high heritabilities. To identify loci underlying such behaviors, we performed a genome study in Romane lambs. RESULTS: The experiment was carried out on 934 male and female lambs allocated into 9 half-sib families (average of 103 lambs per family) and reared outside. After weaning, all the lambs were individually exposed to 4 standardized behavioral tests combining social isolation, exposure to humans or handling, confinement and novelty (i.e. arena test, corridor test, isolation box test, shearing test). A broad range of behaviors including vocalizations, locomotion, vigilance and flight distance, as well as the cortisol response to handling, were collected. All lambs were genotyped using the Illumina OvineSNP50 BeadChip. QTL detection was performed by linkage, association and joint linkage and association analyses using the QTLmap software. Five main QTL regions were identified on sheep chromosomes (Ovis Aries Region, OAR) 12, 16, 19, 21 and 23 among many other QTLs with small to moderate effects. The QTLs on OAR12, 16 and 21 showed significant associations with social reactivity. The QTLs on OAR19 and 23 were found to be associated with reactivity to humans. No overlapping QTLs were identified for the different traits measured in the behavioral tests, supporting the hypothesis that different genetic factors influence social reactivity and tolerance to humans. CONCLUSION: The results of this study using ovine SNP data suggest that in domestic sheep the behavioral responses to social separation and exposure to humans are under polygenic influence. The most relevant QTLs reported in the present study contain interesting candidate genes previously described to be associated with various emotional and social behaviors in mammals.
Assuntos
Comportamento Animal , Locos de Características Quantitativas , Ovinos , Comportamento Social , Animais , Feminino , Estudos de Associação Genética , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Modelos Estatísticos , Fenótipo , Característica Quantitativa HerdávelRESUMO
This study reports a functional characterization of a limited segment (QTL) of sheep chromosome 12 associated with resistance to the abomasal nematode Haemonchus contortus. The first objective was to validate the identified QTL through the comparison of genetically susceptible (N) and resistant (R) sheep produced from Martinik × Romane back-cross sheep. The R and N genotype groups were then experimentally infected with 10 000 H. contortus larvae and measured for FEC (every three days from 18 to 30 days post-challenge), haematocrit, worm burden and fertility. Significant differences in FEC and haematocrit drop were found between R and N sheep. In addition, the female worms recovered from R sheep were less fecund. The second step of the characterization was to investigate functional mechanisms associated with the QTL, thanks to a gene expression analysis performed on the abomasal mucosa and the abomasal lymph node. The gene expression level of a candidate gene lying within the QTL region (PAPP-A2) was measured. In addition, putative interactions between the chromosome segment under study and the top ten differentially expressed genes between resistant MBB and susceptible RMN sheep highlighted in a previous microarray experiment were investigated. We found an induction of Th-2 related cytokine genes expression in the abomasal mucosa of R sheep. Down-regulation of the PAPP-A2 gene expression was observed between naïve and challenged sheep although no differential expression was recorded between challenged R and N sheep. The genotyping of this limited region should contribute to the ability to predict the intrinsic resistance level of sheep.
Assuntos
Regulação da Expressão Gênica , Hemoncose/veterinária , Haemonchus/fisiologia , Locos de Características Quantitativas , Doenças dos Ovinos/genética , Abomaso/parasitologia , Animais , Resistência à Doença , Feminino , Hemoncose/imunologia , Hemoncose/parasitologia , Linfonodos/parasitologia , Masculino , Reação em Cadeia da Polimerase/veterinária , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/parasitologiaRESUMO
BACKGROUND: Haemonchosis is a parasitic disease that causes severe economic losses in sheep industry. In recent years, the increasing resistance of the parasite to anthelmintics has raised the need for alternative control strategies. Genetic selection is a promising alternative but its efficacy depends on the availability of genetic variation and on the occurrence of favourable genetic correlations between the traits included in the breeding goal. The objective of this study was twofold. First, to estimate both the heritability of and the genetic correlations between growth traits and parasite resistance traits, using bivariate linear mixed animal models, from the phenotypes and genotypes of 1004 backcross lambs (considered as a single population), which underwent two subsequent experimental infestations protocols with Haemonchus contortus. Second, to compare the precision of the estimates when using two different relationship matrices: including pedigree information only or including also SNP (single nucleotide polymorphism) information. RESULTS: Heritabilities were low for average daily gain before infestation (0.10 to 0.15) and average daily gain during the first infestation (0.11 to 0.16), moderate for faecal egg counts during the first infestation (0.21 to 0.38) and faecal egg counts during the second infestation (0.48 to 0.55). Genetic correlations between both growth traits and faecal egg count during the naïve infestation were equal to zero but the genetic correlation between faecal egg count during the second infestation and growth was positive in a Haemonchus contortus free environment and negative in a contaminated environment. The standard errors of the estimates obtained by including SNP information were smaller than those obtained by including pedigree information only. CONCLUSIONS: The genetic parameters estimates suggest that growth performance can be selected for independently of selection on resistance to naïve infestation. Selection for increased growth in a non-contaminated environment could lead to more susceptible animals with long-term exposure to the infestation but it could be possible to select for increased growth in a contaminated environment while also increasing resistance to the long-term exposure to the parasite. The use of molecular information increases the precision of the estimates.
Assuntos
Hemoncose/veterinária , Haemonchus/isolamento & purificação , Doenças dos Ovinos/parasitologia , Carneiro Doméstico/genética , Carneiro Doméstico/parasitologia , Animais , Cruzamento , Fezes/parasitologia , Predisposição Genética para Doença , Genótipo , Hemoncose/genética , Contagem de Ovos de Parasitas , Linhagem , Fenótipo , OvinosRESUMO
BACKGROUND: Quantitative trait loci (QTL) detection on a huge amount of phenotypes, like eQTL detection on transcriptomic data, can be dramatically impaired by the statistical properties of interval mapping methods. One of these major outcomes is the high number of QTL detected at marker locations. The present study aims at identifying and specifying the sources of this bias, in particular in the case of analysis of data issued from outbred populations. Analytical developments were carried out in a backcross situation in order to specify the bias and to propose an algorithm to control it. The outbred population context was studied through simulated data sets in a wide range of situations.The likelihood ratio test was firstly analyzed under the "one QTL" hypothesis in a backcross population. Designs of sib families were then simulated and analyzed using the QTL Map software. On the basis of the theoretical results in backcross, parameters such as the population size, the density of the genetic map, the QTL effect and the true location of the QTL, were taken into account under the "no QTL" and the "one QTL" hypotheses. A combination of two non parametric tests - the Kolmogorov-Smirnov test and the Mann-Whitney-Wilcoxon test - was used in order to identify the parameters that affected the bias and to specify how much they influenced the estimation of QTL location. RESULTS: A theoretical expression of the bias of the estimated QTL location was obtained for a backcross type population. We demonstrated a common source of bias under the "no QTL" and the "one QTL" hypotheses and qualified the possible influence of several parameters. Simulation studies confirmed that the bias exists in outbred populations under both the hypotheses of "no QTL" and "one QTL" on a linkage group. The QTL location was systematically closer to marker locations than expected, particularly in the case of low QTL effect, small population size or low density of markers, i.e. designs with low power. Practical recommendations for experimental designs for QTL detection in outbred populations are given on the basis of this bias quantification. Furthermore, an original algorithm is proposed to adjust the location of a QTL, obtained with interval mapping, which co located with a marker. CONCLUSIONS: Therefore, one should be attentive when one QTL is mapped at the location of one marker, especially under low power conditions.
Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Transcriptoma , Algoritmos , Simulação por Computador , Ligação Genética , Genética Populacional/métodos , Humanos , Modelos Genéticos , Fenótipo , Análise de Regressão , Software , Transcriptoma/genéticaRESUMO
Recent studies highlighted the influence of epigenetic marks in the variability of many complex traits, both in plants and animals. These studied focused only on specific sites of the genome having differentially methylated profiles among individuals and/or tissues. In contrast, we recently used the methylation rate of the entire genome as a unique measure considered as a novel quantitative phenotype in sheep. This phenotype named global DNA methylation rate (GDMR), measured by luminometric assay, integrates the methylation level of each CpG dinucleotide within the 6 million of CCGG sites along the ovine genome. GDMR measured in blood previously showed moderate heritability of 0.20 and provided evidence for a genetic determinism. The main objective of the present study was to better characterize the GDMR phenotype in various tissues and investigate its variability in several breeds of sheep reared in the same environment. GDMR was measured on blood samples collected monthly from 59 growing male and female lambs (24 Romane, 23 Blackbelly and 12 Charollais), between birth and 4 months of age. Blood GDMR was on average around 80% and was influenced by the sampling date (p < 0.001), the breed (p = 0.002) and the sex (p = 0.002). In addition, GDMR was determined in 12 somatic (frontal lobe, pituitary gland, heart, lung, sub cutaneous and perirenal adipose tissue, skeletal muscle, liver, spleen, adrenal gland, medulla and cortical kidney) and 6 reproductive tissues (ovary, oviduct, uterus, testis, epididymis and seminal vesicle). GDMR was on average 70% in somatic tissues but marked variation was observed depending on the tissue. The GDMR measured in blood was higher than that measured in other somatic tissues, and is not a good proxy of less accessible tissues. Female reproductive tissues had a 10% higher GDMR than male reproductive tissues. We demonstrated a significant influence of the breed on blood GDMR, certainly reflecting the influence of different genetic backgrounds. The effect of the breed on GDMR may be related to their specific abilities to adapt to and live in different conditions.
RESUMO
Although susceptibility to scrapie is largely controlled by the PrP gene, the role of other genes that affect scrapie resistance in sheep is now confirmed. Following the detection of quantitative trait loci (QTL) on chromosomes 6 and 18 in a half-sib family with an ARQ/VRQ susceptible PrP genotype, the whole pedigree of a naturally infected flock was investigated to confirm these QTL regions in different PrP genotypes. The present study has allowed us to confirm the QTL on chromosome 18, and to demonstrate the QTL effects in several PrP genotypes.
Assuntos
Locos de Características Quantitativas , Scrapie/genética , Ovinos/genética , Animais , Mapeamento Cromossômico , Feminino , Predisposição Genética para Doença , Masculino , Linhagem , Proteínas PrPC/genética , Scrapie/patologia , Fatores de TempoRESUMO
BACKGROUND: Since 2002, active surveillance programmes have detected numerous atypical scrapie (AS) and classical scrapie cases (CS) in French sheep with almost all the PrP genotypes. The aim of this study was 1) to quantify the genetic risk of AS in French sheep and to compare it with the risk of CS, 2) to quantify the risk of AS associated with the increase of the ARR allele frequency as a result of the current genetic breeding programme against CS. METHODS: We obtained genotypes at codons 136, 141, 154 and 171 of the PRNP gene for representative samples of 248 AS and 245 CS cases. We used a random sample of 3,317 scrapie negative animals genotyped at codons 136, 154 and 171 and we made inferences on the position 141 by multiple imputations, using external data. To estimate the risk associated with PrP genotypes, we fitted multivariate logistic regression models and we estimated the prevalence of AS for the different genotypes. Then, we used the risk of AS estimated for the ALRR-ALRR genotype to analyse the risk of detecting an AS case in a flock homogenous for this genotype. RESULTS: Genotypes most at risk for AS were those including an AFRQ or ALHQ allele while genotypes including a VLRQ allele were less commonly associated with AS. Compared to ALRQ-ALRQ, the ALRR-ALRR genotype was significantly at risk for AS and was very significantly protective for CS. The prevalence of AS among ALRR-ALRR animals was 0.6 per thousand and was not different from the prevalence in the general population. CONCLUSION: In conclusion, further selection of ALRR-ALRR animals will not result in an overall increase of AS prevalence in the French sheep population although this genotype is clearly susceptible to AS. However the probability of detecting AS cases in flocks participating in genetic breeding programme against CS should be considered.
Assuntos
Scrapie/genética , Ovinos/genética , Alelos , Animais , Cruzamento , Códon , Frequência do Gene , Genótipo , Modelos Logísticos , Prevalência , Análise de Regressão , Fatores de Risco , Scrapie/epidemiologia , Ovinos/metabolismoRESUMO
BACKGROUND: In the case of an autosomal locus, four transmission events from the parents to progeny are possible, specified by the grand parental origin of the alleles inherited by this individual. Computing the probabilities of these transmission events is essential to perform QTL detection methods. RESULTS: A fast algorithm for the estimation of these probabilities conditional to parental phases has been developed. It is adapted to classical QTL detection designs applied to outbred populations, in particular to designs composed of half and/or full sib families. It assumes the absence of interference. CONCLUSION: The theory is fully developed and an example is given.
Assuntos
Genética Populacional/métodos , Locos de Características Quantitativas , Algoritmos , Alelos , Feminino , Humanos , Masculino , Modelos Genéticos , Linhagem , ProbabilidadeRESUMO
BACKGROUND: The parasitic nematode Haemonchus contortus shows highly variable life history traits. This highlights the need to have an average estimate and a quantification of the variation around it to calibrate epidemiological models. METHODS: This paper aimed to quantify the main life history traits of H. contortus and to identify explanatory factors affecting these traits using a powerful method based on a systematic review and meta-analysis of current literature. The life history traits considered are: (i) the establishment rate of ingested larvae; (ii) the adult mortality rate; (iii) the fertility (i.e. the number of eggs laid/female/day); and (iv) fecundity of female worms (i.e. the number of eggs per gram of faeces). RESULTS: A total of 37 papers that report single experimental infection with H. contortus in sheep and published from 1960 to 2015, were reviewed and collated in this meta-analysis. This encompassed 115 experiments on 982 animals. Each trait was analysed using a linear model weighted by its inverse variance. The average (± SE) larval establishment rate was 0.24 ± 0.02, which decreased as a function of the infection dose and host age. An average adult mortality rate of 0.021 ± 0.002) was estimated from the literature. This trait varied as a function of animal age, breed and protective response due to prior exposure to the parasite. Average female fertility was 1295.9 ± 280.4 eggs/female/day and decreased in resistant breeds and previously infected hosts. Average faecal egg count at necropsy was 908.5 ± 487.1 eggs per gram of faeces and varied as a function of infection duration and host resistance. The average sex ratio of H. contortus was 0.51 ± 0.006. CONCLUSION: This work is the first systematic review to summarise the available information on the parasitic phase of H. contortus in sheep. The results of the meta-analysis provide robust estimates of life history traits for parametrization of epidemiological models, their expected variation according to experimental factors, and provides correlations between these.
Assuntos
Hemoncose/veterinária , Haemonchus/fisiologia , Doenças dos Ovinos/parasitologia , Animais , Hemoncose/parasitologia , Reprodução , OvinosRESUMO
Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified â¼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism.
Assuntos
Troca Genética , Evolução Molecular , Variação Genética , Ovinos/genética , Animais , Feminino , Ligação Genética , Masculino , Linhagem , Locos de Características Quantitativas , Seleção GenéticaRESUMO
Susceptibility to scrapie is largely controlled by the PRNP gene in mice and in several other species. However, individuals with identical scrapie susceptibility Prnp alleles may have very different incubation periods, suggesting the influence of other environmental and genetic factors. To detect loci influencing susceptibility to TSE, two mouse lines carrying the same PRNP genotype (C57BL and RIII) were crossed to produce an F2 population inoculated intracerebrally with a mouse-adapted scrapie strain. Linkage was studied between 72 markers and the age of death of F2 animals. Six QTL were detected, two at a genome-wide significant level (chromosomes 5 and 7) and four at a genome-wide suggestive level (chromosomes 4, 6, 8, and 17). Our results confirmed the existence of some QTL that were detected previously (chromosomes 4, 6, 7, and 8) while others were found only in the present study (chromosomes 5 and 17). Furthermore, it seems that some QTL (chromosomes 4 and 8) are involved in resistance to scrapie as well as to BSE.
Assuntos
Encéfalo/patologia , Suscetibilidade a Doenças , Doenças Priônicas/genética , Locos de Características Quantitativas , Scrapie/transmissão , Animais , Bovinos , Mapeamento Cromossômico , Cromossomos/genética , Cruzamentos Genéticos , Encefalopatia Espongiforme Bovina/genética , Encefalopatia Espongiforme Bovina/transmissão , Feminino , Ligação Genética , Genoma , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Scrapie/patologia , Taxa de SobrevidaRESUMO
The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments.
Assuntos
Variação Genética , Seleção Genética , Ovinos/genética , Animais , Frequência do Gene , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Ovinos/anatomia & histologiaRESUMO
The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50-60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF) suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed): Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc) and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes), sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years.
Assuntos
Cabras/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Genoma , Genômica , Cabras/classificação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reprodutibilidade dos TestesRESUMO
Susceptibility to scrapie is mainly controlled by point mutations at the PRNP locus. However, additional quantitative trait loci (QTL) have been identified across the genome including a region in OAR18. The gene which encodes the inducible form of the cytoplasmic Hsp90 chaperone (HSP90AA1) maps within this region and seems to be associated with the resistance/susceptibility to scrapie in sheep. Here, we have analyzed several polymorphisms which were previously described in the ovine HSP90AA1 5' flanking region and in intron 10 in two naturally scrapie infected Romanov sheep populations. First, we have studied 58 ARQ/VRQ animals pertaining to the sire family where the QTL influencing scrapie incubation period in OAR18 was detected. We have found a significant association between polymorphisms localized at -660 and -528 in the HSP90AA1 5' flanking region and the scrapie incubation period. These two polymorphisms have also been studied in a second sample constituted by 62 VRQ/VRQ sheep showing an extreme incubation period. Results are concordant with the first dataset. Finally, we have studied the HSP90AA1 expression in scrapie and control animals (N = 41) with different HSP90AA1 genotypes by real time PCR on blood samples. The HSP90AA1 expression rate was equivalent in CC(-600)AA(-528) and CG(-600)AG(-528) scrapie resistant animals (ARR/ARR) and was higher in their CC(-600)AA(-528) than in their CG(-600)AG(-528) scrapie susceptible counterparts (VRQ/VRQ). Our results support the hypothesis that the ovine HSP90AA1 gene acts as a modulator of scrapie susceptibility, contributing to the observed differences in the incubation period of scrapie infected animals with the same PRNP genotype.
Assuntos
Proteínas de Choque Térmico HSP90/genética , Polimorfismo Genético , Scrapie/genética , Região 5'-Flanqueadora , Animais , Predisposição Genética para Doença , Genótipo , Íntrons , Locos de Características Quantitativas , OvinosRESUMO
In this study, the potential association of PrP genotypes with health and productive traits was investigated. Data were recorded on animals of the INRA 401 breed from the Bourges-La Sapinière INRA experimental farm. The population consisted of 30 rams and 852 ewes, which produced 1310 lambs. The animals were categorized into three PrP genotype classes: ARR homozygous, ARR heterozygous, and animals without any ARR allele. Two analyses differing in the approach considered were carried out. Firstly, the potential association of the PrP genotype with disease (Salmonella resistance) and production (wool and carcass) traits was studied. The data used included 1042, 1043 and 1013 genotyped animals for the Salmonella resistance, wool and carcass traits, respectively. The different traits were analyzed using an animal model, where the PrP genotype effect was included as a fixed effect. Association analyses do not indicate any evidence of an effect of PrP genotypes on traits studied in this breed. Secondly, a quantitative trait loci (QTL) detection approach using the PRNP gene as a marker was applied on ovine chromosome 13. Interval mapping was used. Evidence for one QTL affecting mean fiber diameter was found at 25 cM from the PRNP gene. However, a linkage between PRNP and this QTL does not imply unfavorable linkage disequilibrium for PRNP selection purposes.
Assuntos
Nível de Saúde , Príons/genética , Locos de Características Quantitativas , Reprodução/genética , Ovinos/crescimento & desenvolvimento , Ovinos/genética , Animais , Feminino , Predisposição Genética para Doença , Genótipo , Fatores de Tempo , LãRESUMO
A chromosome region involved in scrapie incubation time was identified on sheep chromosome 18 (OAR18). Since OAR18 (and OAR7) share conserved chromosome segments with human chromosomes HSA14 and HSA15, a dense map of type I markers was constructed by FISH mapping of bacterial artificial chromosomes containing genes located on these human chromosomes. In this study, we used the complete human sequence information (gene positions in megabases, Mb) to locate approximately one gene every 2 Mb on HSA15 (19 genes mapped between 19.51 and 66.02 Mb) and on HSA14 (11 genes between 73.24 and 102.62 Mb). Combined with previous work carried out in cattle and goats, our results made it possible to refine the comparative map between ruminants and humans for these two highly rearranged chromosomes (10 segments on HSA15 and 7 on HSA14). Furthermore, we identified relatively short intervals containing evolutionary breakpoints, which is a prerequisite to position them precisely. This work is also the first step in the cloning of the region involved in scrapie incubation period in sheep.
Assuntos
Cromossomos Humanos Par 14 , Cromossomos Humanos Par 15 , Rearranjo Gênico , Ruminantes/genética , Scrapie/genética , Animais , Bovinos , Mapeamento Cromossômico , Cromossomos , Cromossomos Bacterianos , Clonagem Molecular , Humanos , Hibridização in Situ Fluorescente , Mapeamento Físico do Cromossomo/veterinária , OvinosRESUMO
An experimental population (1216 lambs from 30 sires) of the Inra401 sheep was created in an Inra flock to allow QTL detection for susceptibility to Salmonella infection, wool and carcass traits. The Inra401 is a sheep composite line developed from two breeds: Berrichon du Cher and Romanov. At 113 days of age on average, the lambs were inoculated intravenously with 10(8) Salmonella abortusovis Rv6 (vaccinal strain). They were slaughtered 10 days after the inoculation. Several traits were measured at inoculation and/or slaughtering to estimate the genetic resistance of the lambs to Salmonella infection: specific IgM and IgG1 antibody titres, body weight loss, spleen and pre-scapular node weights and counts of viable Salmonella persisting in these organs. This paper presents a quantitative analysis of the genetic variability of the traits related to salmonellosis susceptibility. The heritabilities of the traits varied between 0.10 and 0.64 (significantly different from zero). Thus, in sheep as well as in other species, the determinism of resistance to Salmonella infection is under genetic control. Moreover, the correlations between the traits are in agreement with the known immune mechanisms. The genetic variability observed should help QTL detection.