Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Parasitology ; 143(14): 1917-1929, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27707420

RESUMO

Eukaryotic 5S rRNA, synthesized by RNA polymerase III (Pol III), is an essential component of the large ribosomal subunit. Most organisms contain hundreds of 5S rRNA genes organized into tandem arrays. However, the genome of the protozoan parasite Leishmania major contains only 11 copies of the 5S rRNA gene, which are interspersed and associated with other Pol III-transcribed genes. Here we report that, in general, the number and order of the 5S rRNA genes is conserved between different species of Leishmania. While in most organisms 5S rRNA genes are normally associated with the nucleolus, combined fluorescent in situ hybridization and indirect immunofluorescence experiments showed that 5S rRNA genes are mainly located at the nuclear periphery in L. major. Similarly, the tandemly repeated 5S rRNA genes in Trypanosoma cruzi are dispersed throughout the nucleus. In contrast, 5S rRNA transcripts in L. major were localized within the nucleolus, and scattered throughout the cytoplasm, where mature ribosomes are located. Unlike other rRNA species, stable antisense RNA complementary to 5S rRNA is not detected in L. major.


Assuntos
Expressão Gênica , Genes de RNAr , Leishmania major/genética , RNA de Protozoário/genética , RNA Ribossômico 5S/genética , Animais , Sequência de Bases , Genoma de Protozoário , Hibridização in Situ Fluorescente , RNA Polimerase III , RNA Ribossômico 5S/isolamento & purificação , Trypanosoma cruzi
2.
Eukaryot Cell ; 14(3): 216-27, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25548151

RESUMO

Eukaryotic tRNAs, transcribed by RNA polymerase III (Pol III), contain boxes A and B as internal promoter elements. One exception is the selenocysteine (Sec) tRNA (tRNA-Sec), whose transcription is directed by an internal box B and three extragenic sequences in vertebrates. Here we report on the transcriptional analysis of the tRNA-Sec gene in the protozoan parasite Leishmania major. This organism has unusual mechanisms of gene expression, including Pol II polycistronic transcription and maturation of mRNAs by trans splicing, a process that attaches a 39-nucleotide miniexon to the 5' end of all the mRNAs. In L. major, tRNA-Sec is encoded by a single gene inserted into a Pol II polycistronic unit, in contrast to most tRNAs, which are clustered at the boundaries of polycistronic units. 5' rapid amplification of cDNA ends and reverse transcription-PCR experiments showed that some tRNA-Sec transcripts contain the miniexon at the 5' end and a poly(A) tail at the 3' end, indicating that the tRNA-Sec gene is polycistronically transcribed by Pol II and processed by trans splicing and polyadenylation, as was recently reported for the tRNA-Sec genes in the related parasite Trypanosoma brucei. However, nuclear run-on assays with RNA polymerase inhibitors and with cells that were previously UV irradiated showed that the tRNA-Sec gene in L. major is also transcribed by Pol III. Thus, our results indicate that RNA polymerase specificity in Leishmania is not absolute in vivo, as has recently been found in other eukaryotes.


Assuntos
Leishmania major/genética , Proteínas de Protozoários/metabolismo , RNA Polimerase III/metabolismo , RNA Polimerase II/metabolismo , Aminoacil-RNA de Transferência/genética , Leishmania major/enzimologia , Leishmania major/metabolismo , Poliadenilação , Splicing de RNA
3.
PLoS One ; 19(5): e0303914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38809858

RESUMO

The vertebrate enteric nervous system (ENS) is a crucial network of enteric neurons and glia resident within the entire gastrointestinal tract (GI). Overseeing essential GI functions such as gut motility and water balance, the ENS serves as a pivotal bidirectional link in the gut-brain axis. During early development, the ENS is primarily derived from enteric neural crest cells (ENCCs). Disruptions to ENCC development, as seen in conditions like Hirschsprung disease (HSCR), lead to the absence of ENS in the GI, particularly in the colon. In this study, using zebrafish, we devised an in vivo F0 CRISPR-based screen employing a robust, rapid pipeline integrating single-cell RNA sequencing, CRISPR reverse genetics, and high-content imaging. Our findings unveil various genes, including those encoding opioid receptors, as possible regulators of ENS establishment. In addition, we present evidence that suggests opioid receptor involvement in the neurochemical coding of the larval ENS. In summary, our work presents a novel, efficient CRISPR screen targeting ENS development, facilitating the discovery of previously unknown genes, and increasing knowledge of nervous system construction.


Assuntos
Sistemas CRISPR-Cas , Sistema Nervoso Entérico , Peixe-Zebra , Animais , Sistema Nervoso Entérico/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Crista Neural/metabolismo , Doença de Hirschsprung/genética
4.
bioRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234831

RESUMO

The vertebrate enteric nervous system (ENS) is a crucial network of enteric neurons and glia resident within the entire gastrointestinal tract (GI). Overseeing essential GI functions such as gut motility and water balance, the ENS serves as a pivotal bidirectional link in the gut-brain axis. During early development, the ENS is primarily derived from enteric neural crest cells (ENCCs). Disruptions to ENCC development, as seen in conditions like Hirschsprung disease (HSCR), lead to absence of ENS in the GI, particularly in the colon. In this study, using zebrafish, we devised an in vivo F0 CRISPR-based screen employing a robust, rapid pipeline integrating single-cell RNA sequencing, CRISPR reverse genetics, and high-content imaging. Our findings unveil various genes, including those encoding for opioid receptors, as possible regulators of ENS establishment. In addition, we present evidence that suggests opioid receptor involvement in neurochemical coding of the larval ENS. In summary, our work presents a novel, efficient CRISPR screen targeting ENS development, facilitating the discovery of previously unknown genes, and increasing knowledge of nervous system construction.

5.
Mol Cell Biol ; 43(11): 547-565, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882064

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric malignancy of the muscle with characteristics of cells blocked in differentiation. NOTCH1 is an oncogene that promotes self-renewal and blocks differentiation in the fusion negative-RMS sub-type. However, how NOTCH1 expression is transcriptionally maintained in tumors is unknown. Analyses of SNAI2 and CTCF chromatin binding and HiC analyses revealed a conserved SNAI2/CTCF overlapping peak downstream of the NOTCH1 locus marking a sub-topologically associating domain (TAD) boundary. Deletion of the SNAI2-CTCF peak showed that it is essential for NOTCH1 expression and viability of FN-RMS cells. Reintroducing constitutively activated NOTCH1-ΔE in cells with the SNAI2-CTCF peak deleted restored cell-viability. Ablation of SNAI2 using CRISPR/Cas9 reagents resulted in the loss of majority of RD and SMS-CTR FN-RMS cells. However, the few surviving clones that repopulate cultures have recovered NOTCH1. Cells that re-establish NOTCH1 expression after SNAI2 ablation are unable to differentiate robustly as SNAI2 shRNA knockdown cells; yet, SNAI2-ablated cells continued to be exquisitely sensitive to ionizing radiation. Thus, we have uncovered a novel mechanism by which SNAI2 and CTCF maintenance of a sub-TAD boundary promotes rather than represses NOTCH1 expression. Further, we demonstrate that SNAI2 suppression of apoptosis post-radiation is independent of SNAI2/NOTCH1 effects on self-renewal and differentiation.


Assuntos
Cromatina , Rabdomiossarcoma , Criança , Humanos , Fator de Ligação a CCCTC/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Rabdomiossarcoma/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
6.
Zebrafish ; 18(4): 293-296, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34030492

RESUMO

Angiosarcoma is a clinically aggressive tumor with a high rate of mortality. It can arise in vascular or lymphatic tissues, involve any part of the body, and aggressively spread locally or metastasize. Angiosarcomas spontaneously develop in the tp53 deleted (tp53del/del) zebrafish mutant. However, established protocols for tumor dissection and transplantation of single cell suspensions of angiosarcoma tumors result in inferior implantation rates. To resolve these complications, we developed a new tumor grafting technique for engraftment of angiosarcoma and similar tumors in zebrafish, which maintains the tumor microenvironment and has superior rates of engraftment.


Assuntos
Hemangiossarcoma , Transplante de Neoplasias , Peixe-Zebra , Animais , Modelos Animais de Doenças , Hemangiossarcoma/patologia , Suspensões , Microambiente Tumoral
7.
Cancer Res ; 81(21): 5451-5463, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34462275

RESUMO

Ionizing radiation (IR) and chemotherapy are mainstays of treatment for patients with rhabdomyosarcoma, yet the molecular mechanisms that underlie the success or failure of radiotherapy remain unclear. The transcriptional repressor SNAI2 was previously identified as a key regulator of IR sensitivity in normal and malignant stem cells through its repression of the proapoptotic BH3-only gene PUMA/BBC3. Here, we demonstrate a clear correlation between SNAI2 expression levels and radiosensitivity across multiple rhabdomyosarcoma cell lines. Modulating SNAI2 levels in rhabdomyosarcoma cells through its overexpression or knockdown altered radiosensitivity in vitro and in vivo. SNAI2 expression reliably promoted overall cell growth and inhibited mitochondrial apoptosis following exposure to IR, with either variable or minimal effects on differentiation and senescence, respectively. Importantly, SNAI2 knockdown increased expression of the proapoptotic BH3-only gene BIM, and chromatin immunoprecipitation sequencing experiments established that SNAI2 is a direct repressor of BIM/BCL2L11. Because the p53 pathway is nonfunctional in the rhabdomyosarcoma cells used in this study, we have identified a new, p53-independent SNAI2/BIM signaling axis that could potentially predict clinical responses to IR treatment and be exploited to improve rhabdomyosarcoma therapy. SIGNIFICANCE: SNAI2 is identified as a major regulator of radiation-induced apoptosis in rhabdomyosarcoma through previously unknown mechanisms independent of p53.


Assuntos
Proteína 11 Semelhante a Bcl-2/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Radiação Ionizante , Rabdomiossarcoma/prevenção & controle , Fatores de Transcrição da Família Snail/metabolismo , Animais , Apoptose , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos SCID , RNA-Seq , Rabdomiossarcoma/etiologia , Rabdomiossarcoma/patologia , Fatores de Transcrição da Família Snail/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Parasit Vectors ; 9(1): 401, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27430335

RESUMO

BACKGROUND: Leishmania and other trypanosomatid parasites possess atypical mechanisms of gene expression, including the maturation of mRNAs by trans-splicing and the involvement of RNA Polymerase III in transcription of all snRNA molecules. Since snRNAs are essential for trans-splicing, we are interested in the study of the sequences that direct their expression. Here we report the characterization of L. major U2 snRNA promoter region. RESULTS: All species of Leishmania possess a single U2 snRNA gene that contains a divergently-oriented tRNA-Ala gene in the upstream region. Between these two genes we found a tRNA-like sequence that possesses conserved boxes A and B. Primer extension and RT-qPCR analyses with RNA from transiently-transfected cells showed that transcription of L. major U2 snRNA is almost abolished when boxes A and B from the tRNA-like are deleted or mutated. The levels of the U2 snRNA were also highly affected when base substitutions were introduced into box B from the tRNA-Ala gene and the first nucleotides of the U2 snRNA gene itself. We also demonstrate that the tRNA-like is transcribed, generating a main transcript of around 109 bases. As pseudouridines in snRNAs are required for splicing in other organisms, we searched for this modified nucleotide in the L. major U2 snRNA. Our results show the presence of six pseudouridines in the U2 snRNA, including one in the Sm site that has not been reported in other organisms. CONCLUSIONS: Four different regions control the transcription of the U2 snRNA gene in L. major: boxes A and B from the neighbor tRNA-like, box B from the upstream tRNA-Ala gene and the first nucleotides of the U2 snRNA. Thus, the promoter region of L. major U2 snRNA is different from any other promoter reported for snRNAs. Pseudouridines could play important roles in L. major U2 snRNA, since they were found in functionally important regions, including the branch point recognition region and the Sm binding site.


Assuntos
Leishmania major/genética , Regiões Promotoras Genéticas , RNA Nuclear Pequeno/biossíntese , RNA de Transferência de Alanina/genética , Transcrição Gênica , Análise Mutacional de DNA , Pseudouridina/análise , RNA Nuclear Pequeno/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa