Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 130(10): 2165-2189, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28780587

RESUMO

KEY MESSAGE: Genotyping by sequencing is suitable for analysis of global diversity in maize. We showed the distinctiveness of flint maize inbred lines of interest to enrich the diversity of breeding programs. Genotyping-by-sequencing (GBS) is a highly cost-effective procedure that permits the analysis of large collections of inbred lines. We used it to characterize diversity in 1191 maize flint inbred lines from the INRA collection, the European Cornfed association panel, and lines recently derived from landraces. We analyzed the properties of GBS data obtained with different imputation methods, through comparison with a 50 K SNP array. We identified seven ancestral groups within the Flint collection (dent, Northern flint, Italy, Pyrenees-Galicia, Argentina, Lacaune, Popcorn) in agreement with breeding knowledge. Analysis highlighted many crosses between different origins and the improvement of flint germplasm with dent germplasm. We performed association studies on different agronomic traits, revealing SNPs associated with cob color, kernel color, and male flowering time variation. We compared the diversity of both our collection and the USDA collection which has been previously analyzed by GBS. The population structure of the 4001 inbred lines confirmed the influence of the historical inbred lines (B73, A632, Oh43, Mo17, W182E, PH207, and Wf9) within the dent group. It showed distinctly different tropical and popcorn groups, a sweet-Northern flint group and a flint group sub-structured in Italian and European flint (Pyrenees-Galicia and Lacaune) groups. Interestingly, we identified several selective sweeps between dent, flint, and tropical inbred lines that co-localized with SNPs associated with flowering time variation. The joint analysis of collections by GBS offers opportunities for a global diversity analysis of maize inbred lines.


Assuntos
Variação Genética , Genética Populacional , Melhoramento Vegetal , Zea mays/genética , Europa (Continente) , Genótipo , Endogamia , Fenótipo , Polimorfismo de Nucleotídeo Único , Estados Unidos , United States Department of Agriculture
2.
BMC Plant Biol ; 16(1): 127, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27267760

RESUMO

BACKGROUND: Breeding for cold tolerance in maize promises to allow increasing growth area and production in temperate zones. The objective of this research was to conduct genome-wide association analyses (GWAS) in temperate maize inbred lines and to find strategies for pyramiding genes for cold tolerance. Two panels of 306 dent and 292 European flint maize inbred lines were evaluated per se and in testcrosses under cold and control conditions in a growth chamber. We recorded indirect measures for cold tolerance as the traits number of days from sowing to emergence, relative leaf chlorophyll content or quantum efficiency of photosystem II. Association mapping for identifying genes associated to cold tolerance in both panels was based on genotyping with 49,585 genome-wide single nucleotide polymorphism (SNP) markers. RESULTS: We found 275 significant associations, most of them in the inbreds evaluated per se, in the flint panel, and under control conditions. A few candidate genes coincided between the current research and previous reports. A total of 47 flint inbreds harbored the favorable alleles for six significant quantitative trait loci (QTL) detected for inbreds per se evaluated under cold conditions, four of them had also the favorable alleles for the main QTL detected from the testcrosses. Only four dent inbreds (EZ47, F924, NK807 and PHJ40) harbored the favorable alleles for three main QTL detected from the evaluation of the dent inbreds per se under cold conditions. There were more QTL in the flint panel and most of the QTL were associated with days to emergence and ΦPSII. CONCLUSIONS: These results open new possibilities to genetically improve cold tolerance either with genome-wide selection or with marker assisted selection.


Assuntos
Temperatura Baixa , Estresse Fisiológico/genética , Zea mays/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
3.
Genetics ; 198(4): 1717-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25271305

RESUMO

Multiparental designs combined with dense genotyping of parents have been proposed as a way to increase the diversity and resolution of quantitative trait loci (QTL) mapping studies, using methods combining linkage disequilibrium information with linkage analysis (LDLA). Two new nested association mapping designs adapted to European conditions were derived from the complementary dent and flint heterotic groups of maize (Zea mays L.). Ten biparental dent families (N = 841) and 11 biparental flint families (N = 811) were genotyped with 56,110 single nucleotide polymorphism markers and evaluated as test crosses with the central line of the reciprocal design for biomass yield, plant height, and precocity. Alleles at candidate QTL were defined as (i) parental alleles, (ii) haplotypic identity by descent, and (iii) single-marker groupings. Between five and 16 QTL were detected depending on the model, trait, and genetic group considered. In the flint design, a major QTL (R(2) = 27%) with pleiotropic effects was detected on chromosome 10, whereas other QTL displayed milder effects (R(2) < 10%). On average, the LDLA models detected more QTL but generally explained lower percentages of variance, consistent with the fact that most QTL display complex allelic series. Only 15% of the QTL were common to the two designs. A joint analysis of the two designs detected between 15 and 21 QTL for the five traits. Of these, between 27 for silking date and 41% for tasseling date were significant in both groups. Favorable allelic effects detected in both groups open perspectives for improving biomass production.


Assuntos
Cruzamentos Genéticos , Ligação Genética , Desequilíbrio de Ligação , Locos de Características Quantitativas , Zea mays/genética , Alelos , Cromossomos de Plantas , Análise por Conglomerados , Evolução Molecular , Genética Populacional , Genoma de Planta , Vigor Híbrido , Hibridização Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
4.
Genetics ; 198(1): 3-16, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25236445

RESUMO

The efficiency of marker-assisted prediction of phenotypes has been studied intensively for different types of plant breeding populations. However, one remaining question is how to incorporate and counterbalance information from biparental and multiparental populations into model training for genome-wide prediction. To address this question, we evaluated testcross performance of 1652 doubled-haploid maize (Zea mays L.) lines that were genotyped with 56,110 single nucleotide polymorphism markers and phenotyped for five agronomic traits in four to six European environments. The lines are arranged in two diverse half-sib panels representing two major European heterotic germplasm pools. The data set contains 10 related biparental dent families and 11 related biparental flint families generated from crosses of maize lines important for European maize breeding. With this new data set we analyzed genome-based best linear unbiased prediction in different validation schemes and compositions of estimation and test sets. Further, we theoretically and empirically investigated marker linkage phases across multiparental populations. In general, predictive abilities similar to or higher than those within biparental families could be achieved by combining several half-sib families in the estimation set. For the majority of families, 375 half-sib lines in the estimation set were sufficient to reach the same predictive performance of biomass yield as an estimation set of 50 full-sib lines. In contrast, prediction across heterotic pools was not possible for most cases. Our findings are important for experimental design in genome-based prediction as they provide guidelines for the genetic structure and required sample size of data sets used for model training.


Assuntos
Genoma de Planta , Modelos Genéticos , Zea mays/genética , Hibridização Genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
5.
Genetics ; 197(1): 375-87, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24532779

RESUMO

Association mapping has permitted the discovery of major QTL in many species. It can be applied to existing populations and, as a consequence, it is generally necessary to take into account structure and relatedness among individuals in the statistical model to control false positives. We analytically studied power in association studies by computing noncentrality parameter of the tests and its relationship with parameters characterizing diversity (genetic differentiation between groups and allele frequencies) and kinship between individuals. Investigation of three different maize diversity panels genotyped with the 50k SNPs array highlighted contrasted average power among panels and revealed gaps of power of classical mixed models in regions with high linkage disequilibrium (LD). These gaps could be related to the fact that markers are used for both testing association and estimating relatedness. We thus considered two alternative approaches to estimating the kinship matrix to recover power in regions of high LD. In the first one, we estimated the kinship with all the markers that are not located on the same chromosome than the tested SNP. In the second one, correlation between markers was taken into account to weight the contribution of each marker to the kinship. Simulations revealed that these two approaches were efficient to control false positives and were more powerful than classical models.


Assuntos
Mapeamento Cromossômico/métodos , Desequilíbrio de Ligação , Cromossomos de Plantas/genética , Genômica , Técnicas de Genotipagem , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Zea mays/genética
6.
Genome Biol ; 14(9): R103, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24050704

RESUMO

BACKGROUND: In sexually reproducing organisms, meiotic crossovers ensure the proper segregation of chromosomes and contribute to genetic diversity by shuffling allelic combinations. Such genetic reassortment is exploited in breeding to combine favorable alleles, and in genetic research to identify genetic factors underlying traits of interest via linkage or association-based approaches. Crossover numbers and distributions along chromosomes vary between species, but little is known about their intraspecies variation. RESULTS: Here, we report on the variation of recombination rates between 22 European maize inbred lines that belong to the Dent and Flint gene pools. We genotype 23 doubled-haploid populations derived from crosses between these lines with a 50 k-SNP array and construct high-density genetic maps, showing good correspondence with the maize B73 genome sequence assembly. By aligning each genetic map to the B73 sequence, we obtain the recombination rates along chromosomes specific to each population. We identify significant differences in recombination rates at the genome-wide, chromosome, and intrachromosomal levels between populations, as well as significant variation for genome-wide recombination rates among maize lines. Crossover interference analysis using a two-pathway modeling framework reveals a negative association between re combination rate and interference strength. CONCLUSIONS: To our knowledge, the present work provides the most comprehensive study on intraspecific variation of recombination rates and crossover interference strength in eukaryotes. Differences found in recombination rates will allow for selection of high or low recombining lines in crossing programs. Our methodology should pave the way for precise identification of genes controlling recombination rates in maize and other organisms.


Assuntos
Cromossomos de Plantas/química , Variação Genética , Genoma de Planta , Recombinação Genética , Zea mays/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Genótipo , Meiose , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa