Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Gen Intern Med ; 39(4): 540-548, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940757

RESUMO

BACKGROUND: While telehealth's presence in post-pandemic primary care appears assured, its exact role remains unknown. Value-based care's expansion has heightened interest in telehealth's potential to improve uptake of preventive and chronic disease care, especially among high-risk primary care populations. Despite this, the pandemic underscored patients' diverse preferences around using telehealth. Understanding the factors underlying this population's preferences can inform future telehealth strategies. OBJECTIVE: To describe the factors informing high-risk primary care patient choice of whether to pursue primary care via telehealth, in-office or to defer care altogether. DESIGN: Qualitative, cross-sectional study utilizing semi-structured telephone interviews of a convenience sample of 29 primary care patients between July 13 and September 30, 2020. PARTICIPANTS: Primary care patients at high risk of poor health outcomes and/or acute care utilization who were offered a follow-up primary care visit via audiovisual, audio-only or in-office modalities. APPROACH: Responses were analyzed via grounded theory, using a constant comparison method to refine emerging categories, distinguish codes, and synthesize evolving themes. KEY RESULTS: Of the 29 participants, 16 (55.2%) were female and 19 (65.5%) were Black; the mean age (SD) was 64.6 (11.1). Participants identified four themes influencing their choice of visit type: perceived utility (encapsulating clinical and non-clinical utility), underlying costs (in terms of time, money, effort, and safety), modifiers (e.g., participants' clinical situation, choice availability, decision phenotype), and drivers (inclusive of their background experiences and digital environment). The relationship of these themes is depicted in a novel framework of patient choice around telehealth use. CONCLUSIONS: While visit utility and cost considerations are foundational to participants' decisions around whether to pursue care via telehealth, underappreciated modifiers and drivers often magnify or mitigate these considerations. Policymakers, payers, and health systems can leverage these factors to anticipate and enhance equitable high-value telehealth use in primary care settings among high-risk individuals.


Assuntos
Preferência do Paciente , Telemedicina , Humanos , Feminino , Masculino , Estudos Transversais , Projetos de Pesquisa , Atenção Primária à Saúde
2.
J Chem Phys ; 161(5)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39092941

RESUMO

We present the results for energy landscapes of hexapeptides obtained using interfaces to the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) program. We have used basin-hopping global optimization and discrete path sampling to explore the landscapes of hexapeptide monomers, dimers, and oligomers containing 10, 100, and 200 monomers modeled using a residue-level coarse-grained potential, Mpipi, implemented in LAMMPS. We find that the dimers of peptides containing amino acid residues that are better at promoting phase separation, such as tyrosine and arginine, have melting peaks at higher temperature in their heat capacity compared to phenylalanine and lysine, respectively. This observation correlates with previous work on the same uncapped hexapeptide monomers modeled using atomistic potential. For oligomers, we compare the variation in monomer conformations with radial distance and observe trends for selected angles calculated for each monomer. The LAMMPS interfaces to the GMIN and OPTIM programs for landscape exploration offer new opportunities to investigate larger systems and provide access to the coarse-grained potentials implemented within LAMMPS.

3.
J Chem Phys ; 159(6)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37551813

RESUMO

The design of novel materials requires a theoretical understanding of dynamical processes in the solid state, including polymorphic transitions and associated pathways. The organization of the potential energy landscape plays a crucial role in such processes, which may involve changes in the periodic boundaries. This study reports the implementation of a general framework for periodic condensed matter systems in our energy landscape analysis software, allowing for variation in both the unit cell and atomic positions. This implementation provides access to basin-hopping global optimization, the doubly nudged elastic band procedure for identifying transition state candidates, the missing connection approach for multi-step pathways, and general tools for the construction and analysis of kinetic transition networks. The computational efficacy of the procedures is explored using the state-of-the-art semiempirical method GFN1-xTB for the first time in this solid-state context. We investigate the effectiveness of this level of theory by characterizing the potential energy and enthalpy landscapes of several systems, including silicon, CdSe, ZnS, and NaCl, and discuss further technical challenges, such as translational permutation of the cell. Despite the expected limitations of the semiempirical method, we find that the resulting energy landscapes provide useful insight into solid-state simulations, which will facilitate detailed analysis of processes such as defect and ion migration, including refinement at higher levels of theory.

4.
J Chem Phys ; 159(10)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37698195

RESUMO

In this contribution, we employ computational tools from the energy landscape approach to test Gaussian Approximation Potentials (GAPs) for C60. In particular, we apply basin-hopping global optimization and explore the landscape starting from the low-lying minima using discrete path sampling. We exploit existing databases of minima and transition states harvested from previous work using tight-binding potentials. We explore the energy landscape for the full range of structures and pathways spanning from the buckminsterfullerene global minimum up to buckybowls. In the initial GAP model, the fullerene part of the landscape is reproduced quite well. However, there are extensive families of C1@C59 and C2@C58 structures that lie lower in energy. We succeeded in refining the potential to remove these artifacts by simply including two minima from the C2@C58 families found by global landscape exploration. We suggest that the energy landscape approach could be used systematically to test and improve machine learning interatomic potentials.

5.
Ecol Lett ; 25(4): 754-765, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34957674

RESUMO

Nutrient enrichment can simultaneously increase and destabilise plant biomass production, with co-limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N-based treatments increased mean biomass production by 21-51% but increased its standard deviation by 40-68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient-limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Biomassa , Eutrofização , Nitrogênio , Nutrientes
6.
Ecol Lett ; 25(12): 2699-2712, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36278303

RESUMO

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.


Assuntos
Ecossistema , Pradaria , Biomassa , Biodiversidade , Plantas
7.
Glob Chang Biol ; 28(8): 2678-2688, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35038782

RESUMO

Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.


Assuntos
Pradaria , Herbivoria , Biodiversidade , Ecossistema , Nutrientes
8.
Ecol Appl ; 32(5): e2587, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35333422

RESUMO

Livestock grazing is an important management tool for biodiversity conservation in many native grasslands across the globe. Understanding how different grazing species interact with their environment is integral to achieving conservation goals. In the semiarid grasslands of Australia, grazing by sheep or cattle is used to manipulate vegetation structure to suit the habitat needs of a globally unique, critically endangered grassland bird, the plains-wanderer Pedionomus torquatus. However, there has been no investigation of whether sheep and cattle differ in their effects on plains-wanderer habitat and, therefore, it is unknown if these grazers are substitutable as a management tool. Using a grazing experiment in native grasslands over 3 years, we determined the effects of grazer type (sheep, cattle) on occurrence and vocal activity of plains-wanderer, vegetation structure and composition, and food availability. We also examined grazer effects on encounter rates of other grassland birds. Plains-wanderer breeding activity was inferred from vocalization rates captured by bioacoustic recorders. Spotlighting was used to measure encounter rates of other grassland birds. We found that different grazers altered the structure of the habitat. Grasslands grazed by cattle were typically more open, less variable, and lacked patches of dense vegetation relative to those grazed by sheep. Grazer type did not influence the likelihood of plains-wanderer occurrence, but it did interact with year of survey to affect breeding activity. The number of days with one or more calls significantly increased at sheep grazed sites in year-3, which coincided with enduring drought conditions. Similarly, grazer effects on encounter rate of all birds, bird species richness, and Australasian pipit Anthus novaeseelandiae were different between years. Dense vegetation specialists (such as stubble quail Coturnix pectoralis) were positively associated with grasslands grazed by sheep. As a habitat management tool, sheep or cattle grazing are useful when the goal is to support an open grassland structure for the plains-wanderer. However, their substitutability is likely to be dependent upon climate. We caution that a loss of dense vegetation in grasslands grazed by cattle during drought could limit the availability of optimal habitat for the plains-wanderer and habitat for other grassland birds.


Assuntos
Pradaria , Passeriformes , Animais , Biodiversidade , Bovinos , Coturnix , Ecossistema , Gado , Ovinos
9.
Oecologia ; 199(3): 649-659, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35833986

RESUMO

We sought to understand the role that water availability (expressed as an aridity index) plays in determining regional and global patterns of richness and evenness, and in turn how these water availability-diversity relationships may result in different richness-evenness relationships at regional and global scales. We examined relationships between water availability, richness and evenness for eight grassy biomes spanning broad water availability gradients on five continents. Our study found that relationships between richness and water availability switched from positive for drier (South Africa, Tibet and USA) vs. negative for wetter (India) biomes, though were not significant for the remaining biomes. In contrast, only the India biome showed a significant relationship between water availability and evenness, which was negative. Globally, the richness-water availability relationship was hump-shaped, however, not significant for evenness. At the regional scale, a positive richness-evenness relationship was found for grassy biomes in India and Inner Mongolia, China. In contrast, this relationship was weakly concave-up globally. These results suggest that different, independent factors are determining patterns of species richness and evenness in grassy biomes, resulting in differing richness-evenness relationships at regional and global scales. As a consequence, richness and evenness may respond very differently across spatial gradients to anthropogenic changes, such as climate change.


Assuntos
Biodiversidade , Poaceae , China , Ecossistema , Água
10.
Nature ; 537(7618): 93-96, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27556951

RESUMO

Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.


Assuntos
Biodiversidade , Fertilizantes , Pradaria , Plantas/classificação , Plantas/metabolismo , Biomassa , Alimentos , Luz , Plantas/efeitos da radiação , Poaceae/classificação , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa