Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(13): 8928-8938, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526298

RESUMO

Understanding the effect of noncovalent interactions of intermediates at the polarized catalyst-electrolyte interface on water oxidation kinetics is key for designing more active and stable electrocatalysts. Here, we combine operando optical spectroscopy, X-ray absorption spectroscopy (XAS), and surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe the effect of noncovalent interactions on the oxygen evolution reaction (OER) activity of IrOx in acidic and alkaline electrolytes. Our results suggest that the active species for the OER (Ir4.x+-*O) binds much stronger in alkaline compared with acid at low coverage, while the repulsive interactions between these species are higher in alkaline electrolytes. These differences are attributed to the larger fraction of water within the cation hydration shell at the interface in alkaline electrolytes compared to acidic electrolytes, which can stabilize oxygenated intermediates and facilitate long-range interactions between them. Quantitative analysis of the state energetics shows that although the *O intermediates bind more strongly than optimal in alkaline electrolytes, the larger repulsive interaction between them results in a significant weakening of *O binding with increasing coverage, leading to similar energetics of active states in acid and alkaline at OER-relevant potentials. By directly probing the electrochemical interface with complementary spectroscopic techniques, our work goes beyond conventional computational descriptors of the OER activity to explain the experimentally observed OER kinetics of IrOx in acidic and alkaline electrolytes.

2.
Chemphyschem ; 20(22): 2899, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31737982

RESUMO

The front cover artwork is provided by the groups of Prof. Yu Katayama and Prof. Hiromori Tsutsumi at the Yamaguchi University, Japan. The image shows the unique microstructures of electrospun flexible fibers, coated with copper, designed as an efficient oxygen evolution reaction (OER) electrocatalyst. Read the full text of the Article at 10.1002/cphc.201900663.

3.
Chemphyschem ; 20(22): 2973-2980, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31433539

RESUMO

Developing oxygen evolution reaction (OER) catalysts with high activity, long-term durability, and at low cost remains a great challenge. Herein, we report the high activity of fibrous Cu-based catalysts. The synthesis process is simple and scalable. Electrospinning method was selected to synthesize fibrous polymer substrates (Poly(vinylidene fluoride-co-hexafluoropropylene, PVdF-HFP), which are then covered by Cu via electroless deposition. Cu-deposited PVdF-HFP with different microstructures having smooth and roughened surfaces were also synthesized by drop-casting and impregnation method, respectively, to emphasize the importance of the microstructures on OER activity. The OER activity and durability were studied by linear sweep voltammetry, chronoamperometry, and Tafel slope analysis. The Cu/PVdF-HFP fibrous catalysts exhibit significantly improved OER activity and durability compared with Cu plate as well as Cu-deposited PVdF-HFP with different microstructures. The unique fibrous structure provides better mass transport, diffusion, and large active surface area. In addition to the advantages of the fibrous structure, attenuated total reflection infrared (ATR-IR) and ex situ X-ray photoelectron spectroscopy revealed that the improved specific activity for Cu/PVdF-HFP fiber can be attributed to the synergistic effect between Cu and Cu/PVdF-HFP (electron transfer from Cu to PVdF-HFP) at the Cu|PVdF-HFP interface, which results in optimized reaction energetics for the OER.

4.
ACS Appl Mater Interfaces ; 15(9): 11741-11755, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808934

RESUMO

Na metal is a promising anode material for the preparation of next-generation high-energy-density sodium-ion batteries; however, the high reactivity of Na metal severely limits the choice of electrolyte. In addition, rapid charge-discharge battery systems require electrolytes with high Na-ion transport properties. Herein, we demonstrate a stable and high-rate sodium-metal battery enabled by a nonaqueous polyelectrolyte solution composed of a weakly coordinating polyanion-type Na salt, poly[(4-styrenesulfonyl)-(trifluoromethanesulfonyl)imide] (poly(NaSTFSI)) copolymerized with butyl acrylate, in a propylene carbonate solution. It was found that this concentrated polyelectrolyte solution exhibited a remarkably high Na-ion transference number (tNaPP = 0.9) and a high ionic conductivity (σ = 1.1 mS cm-1) at 60 °C. Furthermore, the surface of the Na electrode was modified with polyanion chains anchored via the partial decomposition of the electrolyte. The surface-tethered polyanion layer effectively suppressed the subsequent decomposition of the electrolyte, thereby enabling stable Na deposition/dissolution cycling. Finally, an assembled sodium-metal battery with a Na0.44MnO2 cathode demonstrated an outstanding charge/discharge reversibility (Coulombic efficiency >99.8%) over 200 cycles while also exhibiting a high discharge rate (i.e., 45% capacity retention at 10 mA cm-2).

5.
ACS Omega ; 7(12): 10077-10086, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382293

RESUMO

Water electrolysis under alkaline conditions is of interest due to the applicability of non-precious metal-based materials for electrocatalysts. However, the successful design and synthesis of earth-abundant and efficient catalysts for the oxygen evolution reaction (OER) remain a significant challenge. This work presents cost-effective and straightforward ways to improve the OER activity under alkaline conditions by activating the catalyst-support and reactant-support interaction. Micro/nano-sized fibrous poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) was synthesized via simple and scalable electrospinning and subsequently coated with Cu by electroless deposition to obtain the electrocatalyst with a large specific surface area, enhanced mass transport, and high catalyst utilization. Scanning electron microscopy, infrared spectroscopy, and X-ray diffraction confirmed the successful synthesis of the series of Cu/PVdF-HFP fibrous catalysts with varied ferroelectric polarizability of the PVdF-HFP support in the order of stretch-anneal > anneal > stretch > without pre-treatment of the catalyst. The best OER activity was confirmed for the Cu/PVdF-HFP catalyst with stretch and annealed treatment among the catalysts tested, suggesting that both the reaction kinetics and energetics of stretch-annealed Cu/PVdF-HFP catalysts were optimal for the OER. The electron delocalization between Cu and PVdF-HFP substrates (electron transfer from Cu to the negatively charged (δ- eff) PVdF-HFP region at the Cu|PVdF-HFP interface) and the enhanced transport of reactive hydroxide species and/or the increase in the local pH by positively charged (δ+ eff) PVdF-HFP region concertedly accelerate the OER activity. The overall activity for the prototype water electrolyzer increased 10-fold with stretch-anneal treatment compared to the one without pre-treatment, highlighting the effect of tuning the catalyst-support and reactant-support interaction on improving the efficiency of the water electrolysis.

6.
ACS Appl Mater Interfaces ; 13(5): 6201-6207, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33502162

RESUMO

We propose a molecular design for lithium (Li)-ion-ordered complex structures in nonflammable concentrated electrolytes that facilitates the Li-ion battery (LIB) electrode reaction to produce safer LIBs. The concentrated electrolyte, composed of Li bis(fluorosulfonyl)amide (FSA) salt and a nonflammable tris(2,2,2-trifluoroethyl) phosphate (TFEP) solvent, showed no electrode reaction (i.e., no Li-ion intercalation into the negative graphite electrode); however, introducing a small molecular additive (acetonitrile [AN]) into concentrated TFEP-based electrolytes is shown to improve the battery electrode reaction, leading to reversible charge/discharge behavior. Combined high-energy X-ray total scattering experiments incorporating all-atom molecular dynamics simulations were used to visualize Li-ion complexes at the molecular level and revealed that (1) Li ions form mononuclear complexes in a concentrated LiFSA/TFEP (without additives) owing to solvation steric effects arising from the molecular size of TFEP and (2) adding a small-sized additive, AN, reduces the steric effect and triggers a change in Li-ion structures, i.e., the formation of a specific Li-ion-ordered structure linked via FSA anions. These Li-ion-ordered complexes stabilize the energy of the lowest unoccupied molecular orbital (LUMO) on FSA anions, which is key to producing an anion-derived solid electrolyte interphase (SEI) at the graphite electrode. We performed in situ surface-enhanced infrared absorption spectroscopy and discussed the electrode/electrolyte interface and SEI formation mechanisms in TFEP-based concentrated electrolyte systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa