Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Epilepsia ; 65(6): 1709-1719, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546705

RESUMO

OBJECTIVES: Amygdala enlargement is detected on magnetic resonance imaging (MRI) in some patients with drug-resistant temporal lobe epilepsy (TLE), but its clinical significance remains uncertain We aimed to assess if the presence of amygdala enlargement (1) predicted seizure outcome following anterior temporal lobectomy with amygdalohippocampectomy (ATL-AH) and (2) was associated with specific histopathological changes. METHODS: This was a case-control study. We included patients with drug-resistant TLE who underwent ATL-AH with and without amygdala enlargement detected on pre-operative MRI. Amygdala volumetry was done using FreeSurfer for patients who had high-resolution T1-weighted images. Mann-Whitney U test was used to compare pre-operative clinical characteristics between the two groups. The amygdala volume on the epileptogenic side was compared to the amygdala volume on the contralateral side among cases and controls. Then, we used a two-sample, independent t test to compare the means of amygdala volume differences between cases and controls. The chi-square test was used to assess the correlation of amygdala enlargement with (1) post-surgical seizure outcomes and (2) histopathological changes. RESULTS: Nineteen patients with and 19 patients without amygdala enlargement were studied. Their median age at surgery was 38 years for cases and 39 years for controls, and 52.6% were male. There were no statistically significant differences between the two groups in their pre-operative clinical characteristics. There were significant differences in the means of volume difference between cases and controls (Diff = 457.2 mm3, 95% confidence interval [CI] 289.6-624.8; p < .001) and in the means of percentage difference (p < .001). However, there was no significant association between amygdala enlargement and surgical outcome (p = .72) or histopathological changes (p = .63). SIGNIFICANCE: The presence of amygdala enlargement on the pre-operative brain MRI in patients with TLE does not affect the surgical outcome following ATL-AH, and it does not necessarily suggest abnormal histopathology. These findings suggest that amygdala enlargement might reflect a secondary reactive process to seizures in the epileptogenic temporal lobe.


Assuntos
Tonsila do Cerebelo , Epilepsia do Lobo Temporal , Imageamento por Ressonância Magnética , Humanos , Tonsila do Cerebelo/cirurgia , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Masculino , Feminino , Adulto , Estudos de Casos e Controles , Resultado do Tratamento , Adulto Jovem , Pessoa de Meia-Idade , Lobectomia Temporal Anterior/métodos , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/patologia , Hipocampo/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/cirurgia , Adolescente
2.
Exp Cell Res ; 431(1): 113743, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591452

RESUMO

A critical challenge in the treatment of glioblastoma (GBM) is its highly invasive nature which promotes cell migration throughout the brain and hinders surgical resection and effective drug delivery. GBM cells demonstrate augmented invasive capabilities following exposure to the current gold standard treatment of radiotherapy (RT) and concomitant and adjuvant temozolomide (TMZ), resulting in rapid disease recurrence. Elucidating the mechanisms employed by post-treatment invasive GBM cells is critical to the development of more effective therapies. In this study, we utilized a Nanostring® Cancer Progression gene expression panel to identify candidate genes that may be involved in enhanced GBM cell invasion after treatment with clinically relevant doses of RT/TMZ. Our findings identified thrombospondin-1 (THBS1) as a pro-invasive gene that is upregulated in these cells. Immunofluorescence staining revealed that THBS1 localised within functional matrix-degrading invadopodia that formed on the surface of GBM cells. Furthermore, overexpression of THBS1 resulted in enhanced GBM cell migration and secretion of MMP-2, which was reduced with silencing of THBS1. The preliminary data demonstrates that THBS1 is associated with invadopodia in GBM cells and is likely involved in the invadopodia-mediated invasive process in GBM cells exposed to RT/TMZ treatment. Therapeutic inhibition of THBS1-mediated invadopodia activity, which facilitates GBM cell invasion, should be further investigated as a treatment for GBM.


Assuntos
Glioblastoma , Podossomos , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Recidiva Local de Neoplasia , Temozolomida/farmacologia , Encéfalo
3.
Mol Cell Biochem ; 478(6): 1251-1267, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36302993

RESUMO

Glioblastoma (GBM) is the most prevalent primary central nervous system tumour in adults. The lethality of GBM lies in its highly invasive, infiltrative, and neurologically destructive nature resulting in treatment failure, tumour recurrence and death. Even with current standard of care treatment with surgery, radiotherapy and chemotherapy, surviving tumour cells invade throughout the brain. We have previously shown that this invasive phenotype is facilitated by actin-rich, membrane-based structures known as invadopodia. The formation and matrix degrading activity of invadopodia is enhanced in GBM cells that survive treatment. Drug repurposing provides a means of identifying new therapeutic applications for existing drugs without the need for discovery or development and the associated time for clinical implementation. We investigate several FDA-approved agents for their ability to act as both cytotoxic agents in reducing cell viability and as 'anti-invadopodia' agents in GBM cell lines. Based on their cytotoxicity profile, three agents were selected, bortezomib, everolimus and fludarabine, to test their effect on GBM cell invasion. All three drugs reduced radiation/temozolomide-induced invadopodia activity, in addition to reducing GBM cell viability. These drugs demonstrate efficacious properties warranting further investigation with the potential to be implemented as part of the treatment regime for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Reposicionamento de Medicamentos , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Temozolomida/farmacologia
4.
Med J Aust ; 218(1): 40-45, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36502448

RESUMO

Low back pain (LBP) is common and a leading cause of disability and lost productivity worldwide. Acute LBP is frequently self-resolving, but recurrence is common, and a significant proportion of patients will develop chronic pain. This transition is perpetuated by anatomical, biological, psychological and social factors. Chronic LBP should be managed with a holistic biopsychosocial approach of generally non-surgical measures. Spinal surgery has a role in alleviating radicular pain and disability resulting from neural compression, or where back pain relates to cancer, infection, or gross instability. Spinal surgery for all other forms of back pain is unsupported by clinical data, and the broader evidence base for spinal surgery in the management of LBP is poor and suggests it is ineffective. Emerging areas of interest include selection of a minority of patients who may benefit from surgery based on spinal sagittal alignment and/or nuclear medicine scans, but an evidence base is absent. Spinal surgery for back pain has increased substantially over recent decades, and disproportionately among privately insured patients, thus the contribution of industry and third-party payers to this increase, and their involvement in published research, requires careful consideration.


Assuntos
Dor Aguda , Dor Crônica , Dor Lombar , Humanos , Dor Lombar/cirurgia , Dor nas Costas , Coluna Vertebral
5.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834778

RESUMO

Glioblastoma cells adapt to changes in glucose availability through metabolic plasticity allowing for cell survival and continued progression in low-glucose concentrations. However, the regulatory cytokine networks that govern the ability to survive in glucose-starved conditions are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma survival, proliferation and invasion when cells are starved of glucose. We identified enhanced IL-11/IL-11Rα expression correlated with reduced overall survival in glioblastoma patients. Glioblastoma cell lines over-expressing IL-11Rα displayed greater survival, proliferation, migration and invasion in glucose-free conditions compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα reversed these pro-tumorigenic characteristics. In addition, these IL-11Rα-over-expressing cells displayed enhanced glutamine oxidation and glutamate production compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα or the pharmacological inhibition of several members of the glutaminolysis pathway resulted in reduced survival (enhanced apoptosis) and reduced migration and invasion. Furthermore, IL-11Rα expression in glioblastoma patient samples correlated with enhanced gene expression of the glutaminolysis pathway genes GLUD1, GSS and c-Myc. Overall, our study identified that the IL-11/IL-11Rα pathway promotes glioblastoma cell survival and enhances cell migration and invasion in environments of glucose starvation via glutaminolysis.


Assuntos
Glioblastoma , Humanos , Linhagem Celular , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glucose/metabolismo , Interleucina-11/metabolismo , Receptores de Interleucina-11
6.
Epilepsia ; 63(5): 1081-1092, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35266138

RESUMO

OBJECTIVES: Around 30% of patients undergoing surgical resection for drug-resistant mesial temporal lobe epilepsy (MTLE) do not obtain seizure freedom. Success of anterior temporal lobe resection (ATLR) critically depends on the careful selection of surgical candidates, aiming at optimizing seizure freedom while minimizing postoperative morbidity. Structural MRI and FDG-PET neuroimaging are routinely used in presurgical assessment and guide the decision to proceed to surgery. In this study, we evaluate the potential of machine learning techniques applied to standard presurgical MRI and PET imaging features to provide enhanced prognostic value relative to current practice. METHODS: Eighty two patients with drug resistant MTLE were scanned with FDG-PET pre-surgery and T1-weighted MRI pre- and postsurgery. From these images the following features of interest were derived: volume of temporal lobe (TL) hypometabolism, % of extratemporal hypometabolism, presence of contralateral TL hypometabolism, presence of hippocampal sclerosis, laterality of seizure onset volume of tissue resected and % of temporal lobe hypometabolism resected. These measures were used as predictor variables in logistic regression, support vector machines, random forests and artificial neural networks. RESULTS: In the study cohort, 24 of 82 (28.3%) who underwent an ATLR for drug-resistant MTLE did not achieve Engel Class I (i.e., free of disabling seizures) outcome at a minimum of 2 years of postoperative follow-up. We found that machine learning approaches were able to predict up to 73% of the 24 ATLR surgical patients who did not achieve a Class I outcome, at the expense of incorrect prediction for up to 31% of patients who did achieve a Class I outcome. Overall accuracies ranged from 70% to 80%, with an area under the receiver operating characteristic curve (AUC) of .75-.81. We additionally found that information regarding overall extent of both total and significantly hypometabolic tissue resected was crucial to predictive performance, with AUC dropping to .59-.62 using presurgical information alone. Incorporating the laterality of seizure onset and the choice of machine learning algorithm did not significantly change predictive performance. SIGNIFICANCE: Collectively, these results indicate that "acceptable" to "good" patient-specific prognostication for drug-resistant MTLE surgery is feasible with machine learning approaches utilizing commonly collected imaging modalities, but that information on the surgical resection region is critical for optimal prognostication.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Fluordesoxiglucose F18 , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Convulsões , Resultado do Tratamento
7.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269915

RESUMO

Glioblastoma is the most aggressive brain tumour with short survival, partly due to resistance to conventional therapy. Glioma stem cells (GSC) are likely to be involved in treatment resistance, by releasing extracellular vesicles (EVs) containing specific molecular cargoes. Here, we studied the EVs secreted by glioma stem cells (GSC-EVs) and their effects on radiation resistance and glioma progression. EVs were isolated from 3 GSCs by serial centrifugation. NanoSight measurement, cryo-electron microscopy and live imaging were used to study the EVs size, morphology and uptake, respectively. The non-GSC glioma cell lines LN229 and U118 were utilised as a recipient cell model. Wound healing assays were performed to detect cell migration. Colony formation, cell viability and invadopodium assays were conducted to detect cell survival of irradiated recipient cells and cell invasion post GSC-EV treatment. NanoString miRNA global profiling was used to select for the GSC-EVs' specific miRNAs. All three GSC cell lines secreted different amounts of EVs, and all expressed consistent levels of CD9 but different level of Alix, TSG101 and CD81. EVs were taken up by both LN229 and U118 recipient cells. In the presence of GSC-EVs, these recipient cells survived radiation exposure and initiated colony formation. After GSC-EVs exposure, LN229 and U118 cells exhibited an invasive phenotype, as indicated by an increase in cell migration. We also identified 25 highly expressed miRNAs in the GSC-EVs examined, and 8 of these miRNAs can target PTEN. It is likely that GSC-EVs and their specific miRNAs induced the phenotypic changes in the recipient cells due to the activation of the PTEN/Akt pathway. This study demonstrated that GSC-EVs have the potential to induce radiation resistance and modulate the tumour microenvironment to promote glioma progression. Future therapeutic studies should be designed to interfere with these GSC-EVs and their specific miRNAs.


Assuntos
Vesículas Extracelulares , Glioma , MicroRNAs , Microscopia Crioeletrônica , Vesículas Extracelulares/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/radioterapia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
8.
J Neurooncol ; 154(3): 265-274, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34529228

RESUMO

PURPOSE: The leading cause of early death in patients with neurofibromatosis type 1 (NF1) is malignant peripheral nerve sheath tumor (MPNST). The principles of management include early diagnosis, surgical clearance and close monitoring for tumor recurrence. Current methods for diagnosis, detection of residual disease and monitoring tumor burden are inadequate, as clinical and radiological features are non-specific for malignancy in patients with multiple tumors and lack the sensitivity to identify early evidence of malignant transformation or tumor recurrence. Circulating tumor DNA (ctDNA) is a promising tool in cancer management and has the potential to improve the care of patients with NF1. In the following article we summarise the current understanding of the genomic landscape of MPNST, report on the previous literature of ctDNA in MPNST and outline the potential clinical applications for ctDNA in NF1 associated MPNST. Finally, we describe our prospective cohort study protocol investigating the utility of using ctDNA as an early diagnostic tool for MPNSTs in NF1 patients.


Assuntos
Neurofibromatose 1 , Neurofibrossarcoma , DNA Tumoral Circulante/genética , Humanos , Recidiva Local de Neoplasia , Neoplasias de Bainha Neural/diagnóstico , Neoplasias de Bainha Neural/genética , Neurofibromatose 1/complicações , Neurofibromatose 1/diagnóstico , Neurofibromatose 1/genética , Neurofibrossarcoma/diagnóstico por imagem , Neurofibrossarcoma/etiologia , Neurofibrossarcoma/genética , Estudos Prospectivos
9.
Adv Exp Med Biol ; 1270: 123-144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33123997

RESUMO

Homeostasis is the key to survival. This is as true for the tumour cell as it is for the normal host cell. Tumour cells and normal host cells constantly interact with each other, and the balance of these interactions results in the prevailing homeostatic conditions. The interactions between the milieu of signalling molecules and their effects on the host and tumour cells are known as the tumour microenvironment. The predominant balance of effects within the tumour microenvironment will determine if the tumour cells can evade the host's responses to survive and grow or if the tumour cells will be eradicated. Lysophospholipids (LPLs) are a group of lipid signalling molecules which exert their effects via autocrinic and paracrinic mechanisms. Therefore, LPLs are being explored to determine if they are potentially key signalling molecules within the tumour microenvironment. The effects of LPLs within the tumour microenvironment include modulating cell proliferation, cell survival, cell motility, angiogenesis and the immune system. These are all important activities that affect the balance of host-tumour cell interactions. This chapter expands on these functions and also the role that LPLs could play as a potential treatment target in the future.


Assuntos
Lisofosfolipídeos/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral , Movimento Celular , Proliferação de Células , Humanos , Sistema Imunitário , Neovascularização Patológica
10.
Ann Neurol ; 85(2): 241-250, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30609109

RESUMO

OBJECTIVE: We investigated the relationship between the interictal metabolic patterns, the extent of resection of 18 F-fluorodeoxyglucose positron emission tomography (18 FDG-PET) hypometabolism, and seizure outcomes in patients with unilateral drug-resistant mesial temporal lobe epilepsy (MTLE) following anterior temporal lobe (TL) resection. METHODS: Eighty-two patients with hippocampal sclerosis or normal magnetic resonance imaging (MRI) findings, concordant 18 FDG-PET hypometabolism, and at least 2 years of postoperative follow-up were included in this 2-center study. The hypometabolic regions in each patient were identified with reference to 20 healthy controls (p < 0.005). The resected TL volume and the volume of resected TL PET hypometabolism (TLH) were calculated from the pre- and postoperative MRI scans coregistered with interictal 18 FDG-PET. RESULTS: Striking differences in metabolic patterns were observed depending on the lateralization of the epileptogenic TL. The extent of the ipsilateral TLH was significantly greater in left MTLE patients (p < 0.001), whereas right MTLE patients had significantly higher rates of contralateral (CTL) TLH (p = 0.016). In right MTLE patients, CTL hypometabolism was the strongest predictor of an unfavorable seizure outcome, associated with a 5-fold increase in the likelihood of seizure recurrence (odds ratio [OR] = 4.90, 95% confidence interval [CI] = 1.07-22.39, p = 0.04). In left MTLE patients, greater extent of resection of ipsilateral TLH was associated with lower rates of seizure recurrence (p = 0.004) in univariate analysis; however, its predictive value did not reach statistical significance (OR = 0.96, 95% CI = 0.90-1.02, p = 0.19). INTERPRETATION: The difference in metabolic patterns depending on the lateralization of MTLE may represent distinct epileptic networks in patients with right versus left MTLE, and can guide preoperative counseling and surgical planning. Ann Neurol 2019; 1-10 ANN NEUROL 2019;85:241-250.


Assuntos
Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Adulto , Lobectomia Temporal Anterior , Estudos de Casos e Controles , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Feminino , Fluordesoxiglucose F18 , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Estudos Retrospectivos , Esclerose , Resultado do Tratamento
11.
J Neurooncol ; 149(3): 401, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33026635

RESUMO

For the reference citation '[57]' in the second paragraph of the Results section of the original article there was no corresponding entry in the References section. It should have referred to the below mentioned article by Ebrahimkhani et al. (2018).

12.
J Neurooncol ; 149(3): 391-400, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32915353

RESUMO

PURPOSE: A circulating biomarker has potential to provide more accurate information for glioma progression post treatment, however no such biomarker is currently available. We aimed to discover a microRNA serum biomarker for longitudinal monitoring of glioma patients. METHODS: A prospectively collected cohort of 91 glioma patients and 17 healthy controls underwent pre and post-operative serum miRNA profiling using Nanostring®. Differentially expressed miRNAs were discovered using a machine learning random forest analysis. Candidate miRNAs were then assessed by droplet digital PCR in 11 patients with multiple follow up samples and compared to tumor volume based on magnetic resonance imaging. RESULTS: A 9-gene miRNA signature was identified that could distinguish between glioma and healthy controls with 99.8% accuracy. Two miRNAs miR-223 and miR-320e, best demonstrated dynamic changes that correlated closely with tumor volume in LGG and GBM respectively. Importantly, miRNA levels did not increase in two cases of pseudo-progression, indicating the potential utility of this test in guiding treatment decisions. CONCLUSIONS: We identified a highly accurate 9-miRNA signature associated with glioma serum. Additionally, we observed dynamic changes in specific miRNAs correlating with tumor volume over long-term follow up. These results support a large prospective validation study of serum miRNA biomarkers in glioma.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/sangue , Glioma/sangue , MicroRNAs/genética , Recidiva Local de Neoplasia/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Feminino , Seguimentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Glioma/cirurgia , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Estudos Prospectivos , Adulto Jovem
13.
Exp Cell Res ; 374(2): 353-364, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30562483

RESUMO

Glioblastoma (GBM) tumor cells exhibit drug resistance and are highly infiltrative. GBM stem cells (GSCs), which have low proliferative capacity are thought to be one of the sources of resistant cells which result in relapse/recurrence. However, the molecular mechanisms regulating quiescent-specific tumor cell biology are not well understood. Using human GBM cell lines and patient-derived GBM cells, Oregon Green dye retention was used to identify and isolate the slow-cycling, quiescent-like cell subpopulation from the more proliferative cells in culture. Sensitivity of cell subpopulations to temozolomide and radiation, as well as the migration and invasive potential were measured. Differential expression analysis following RNAseq identified genes enriched in the quiescent cell subpopulation. Orthotopic transplantation of cells into mice was used to compare the in vivo malignancy and invasive capacity of the cells. Proliferative quiescence correlated with better TMZ resistance and enhanced cell invasion, in vitro and in vivo. RNAseq expression analysis identified genes involved in the regulation cell invasion/migration and a three-gene signature, TGFBI, IGFBP3, CHI3L1, overexpressed in quiescent cells which correlates with poor GBM patient survival.


Assuntos
Neoplasias Encefálicas/patologia , Divisão Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioblastoma/patologia , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
Neurobiol Dis ; 123: 110-114, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30048805

RESUMO

The Epilepsy Bioinformatics Study for Anti-epileptogenic Therapy (EpiBioS4Rx) is a longitudinal prospective observational study funded by the National Institute of Health (NIH) to discover and validate observational biomarkers of epileptogenesis after traumatic brain injury (TBI). A multidisciplinary approach has been incorporated to investigate acute electrical, neuroanatomical, and blood biomarkers after TBI that may predict the development of post-traumatic epilepsy (PTE). We plan to enroll 300 moderate-severe TBI patients with a frontal and/or temporal lobe hemorrhagic contusion. Acute evaluation with blood, imaging and electroencephalographic monitoring will be performed and then patients will be tracked for 2 years to determine the incidence of PTE. Validation of selected biomarkers that are discovered in planned animal models will be a principal feature of this work. Specific hypotheses regarding the discovery of biomarkers have been set forth in this study. An international cohort of 13 centers spanning 2 continents will be developed to facilitate this study, and for future interventional studies.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico , Epilepsia Pós-Traumática/diagnóstico , Biomarcadores/sangue , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Biologia Computacional , Epilepsia Pós-Traumática/sangue , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/fisiopatologia , Humanos , Estudos Longitudinais , Estudos Observacionais como Assunto , Estudos Prospectivos
15.
Cancer Invest ; 37(3): 144-155, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30907150

RESUMO

Glioma stem cells (GSCs) play major roles in drug resistance, tumour maintenance and recurrence of glioblastoma. We investigated inhibition of the GTPase dynamin 2 as a therapy for glioblastoma. Glioma cell lines and patient-derived GSCs were treated with dynamin inhibitors, Dynole 34-2 and CyDyn 4-36. We studied about cell viability, and GSC neurosphere formation in vitro and orthotopic tumour growth in vivo. Dynamin inhibition reduced glioblastoma cell line viability and suppressed neurosphere formation and migration of GSCs. Tumour growth was reduced by CyDyn 4-36 treatment. Dynamin 2 inhibition therefore represents a novel approach for stem cell-directed Glioblastoma therapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Cianoacrilatos/uso terapêutico , Dinamina II/antagonistas & inibidores , Glioma/tratamento farmacológico , Indóis/uso terapêutico , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dinamina II/metabolismo , Glioma/metabolismo , Glioma/patologia , Humanos , Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Epilepsy Behav ; 78: 30-36, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29172136

RESUMO

OBJECTIVE: Isocitrate dehydrogenase 1 and 2 mutations (IDH1/2) have an established association with preoperative seizures in patients with grades II-IV diffuse gliomas. Here, we examined if IDH1/2 mutations are a biomarker of postoperative seizure frequency. METHODS: This was a retrospective study. Patients with grades II-IV supratentorial diffuse glioma, immunohistochemistry results of IDH1-R132H, and antiepileptic drug (AED) prescribed postoperatively were included. The primary outcome was seizure frequency over the first 12 postoperative months: Group A - postoperative seizure freedom; Group B - 1-11 seizures over 12months (less than one seizure per month); and Group C - greater than one seizure per month. Rates of IDH1-R132H mutation were compared between the three outcome groups in univariate and multivariate analyses. Subgroup analysis was performed in 64 patients with IDH1/2 pyrosequencing data. RESULTS: One hundred cases were included in the analysis: 30.0% grade II, 20.0% grade III, and 50.0% grade IV gliomas. Group B patients averaged 1 seizure over 12months, compared with 2 seizures per month in Group C. Isocitrate dehydrogense 1-R132H mutation was present in 29.3% (17/58) of Group A, 18.2% (14/22) of Group B, and 70.0% (14/20) of Group C patients (p=0.001). On multivariate analysis, after controlling for preoperative seizure, grade, and temporal tumor location, IDH1-R132H was associated with Group C when compared with both Group A (RR 4.75, p=0.032) and Group B (RR 9.70, p=0.012). In the subgroup with IDH1/2 molecular data, an IDH1/2 mutation was present in 64.7% (22/34) of Group A, 28.6% (4/14) of Group C, and 87.5% (14/16) of Group C patients (p=0.004). SIGNIFICANCE: In patients with supratentorial diffuse gliomas, IDH1-R132H mutations are associated with a more severe phenotype of postoperative epilepsy. These findings support further research into IDH mutations, and the potential for an antiepileptic therapeutic effect of their inhibitors, in patients with glioma-associated epilepsy.


Assuntos
Neoplasias Encefálicas/genética , Epilepsia/genética , Glioma/genética , Isocitrato Desidrogenase/genética , Adulto , Idoso , Anticonvulsivantes/uso terapêutico , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/patologia , Epilepsia/complicações , Epilepsia/etiologia , Feminino , Glioma/classificação , Glioma/complicações , Glioma/patologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mutação , Período Pós-Operatório , Estudos Retrospectivos , Convulsões/complicações , Índice de Gravidade de Doença
17.
J Neurooncol ; 131(2): 321-329, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27896520

RESUMO

Bevacizumab, an anti-angiogenic agent, is FDA-approved for use in patients with recurrent glioblastoma multiforme (rGBM). The radiologic evaluation of tumor response to bevacizumab is complex and there is no validated method of monitoring tumor vascularity during therapy. We evaluated perfusion-weighted MR imaging (PWI) in our cohort of patients enrolled in the CABARET trial, which examined the effectiveness of bevacizumab with or without carboplatin in patients with rGBM. Pre-treatment and early follow-up (4- and 8-week) PWI were used to calculate relative cerebral blood volume (rCBV) histogram statistics of the contrast-enhancing and FLAIR hyperintense tumor volumes. A novel rCBV measurement (load) was developed to estimate the total volume of perfused tumor blood vessels. Changes in all rCBV measures were examined for correlations with progression-free (PFS) and overall survival (OS). All of our 15 patients enrolled in the CABARET trial were included. Median PFS and OS were 23 and 45 weeks respectively. Kaplan-Meier analysis of pre-treatment PWI revealed an 18 week reduction in median OS in patients with high tumor rCBV (p = 0.031). Changes in rCBV measures, especially load, correlated significantly with PFS and OS at both follow-up time-points. Patients with the greatest reduction in rCBVload by 8-weeks of therapy had a significantly increased median OS (30 weeks; p = 0.013). PWI may be of significant clinical utility in managing patients with rGBM, particularly those treated with anti-angiogenic agents such as bevacizumab. These findings need to be confirmed prospectively in larger studies.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Carboplatina/uso terapêutico , Glioblastoma/tratamento farmacológico , Angiografia por Ressonância Magnética , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Glioblastoma/diagnóstico por imagem , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
18.
Epilepsia ; 57(11): 1779-1788, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27666131

RESUMO

OBJECTIVE: The patterns of postoperative seizure control and response to antiepileptic drugs (AEDs) in tumor-associated epilepsy (TAE) are poorly understood. We aim to document these characteristics in patients with supratentorial gliomas. METHODS: This was a retrospective analysis of 186 patients with supratentorial gliomas. Seizure patterns were classified into four groups: A, no postoperative seizure; B, early postoperative seizure control within 6 months; C, fluctuating seizure control; and D, never seizure-free. Rates and duration of seizure freedom, subsequent seizure relapse, and response to AED were analyzed. RESULTS: Among patients included, 49 (26.3%) had grade II, 28 (15.1%) had grade III, and 109 (58.6%) had grade IV glioma. Outcome pattern A was observed in 95 (51.1%), B in 22 (11.8%), C in 45 (24.2%), and D in 24 (12.9%). One hundred nineteen patients had at least one seizure and were classified as having TAE. Compared to pattern A, pattern B was predicted by histologic progression; pattern C by tumor grade, preoperative seizure, and histologic progression, and pattern D by preoperative seizure and gross total resection. Among patients with TAE, 57.5% of grade II, 68.2% of grade III, and 26.3% of grade IV experienced a period of 12-month seizure freedom. After first 12-month seizure remission, 39.1%, 60.0%, and 13.3% of grade II, III, and IV gliomas, respectively, experienced subsequent seizure; 22.6% of those with TAE reached terminal seizure freedom of at least 12 months on their first postoperative AED regimen, 6.5% on their second regimen, and 5.4% on subsequent regimens. SIGNIFICANCE: Distinct patterns of postoperative seizure control exist in gliomas; they have specific risk factor profiles, and we hypothesize these correspond to unique pathogenic mechanisms. Twelve-month seizure freedom with subsequent relapse is frequent in grade II-III gliomas. Response to AEDs is markedly poorer than with non-TAE, highlighting the complex epileptogenicity of gliomas.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Complicações Pós-Operatórias/tratamento farmacológico , Adulto , Idoso , Neoplasias Encefálicas/cirurgia , Estudos de Coortes , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Neoplasias/cirurgia , Complicações Pós-Operatórias/fisiopatologia , Estudos Retrospectivos , Resultado do Tratamento
19.
J Neurooncol ; 129(2): 259-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27311724

RESUMO

To examine the impact of glutamate on post-operative seizures and survival in a cohort of patients with grade II to IV supratentorial glioma. A retrospective analysis was performed on 216 patients who underwent surgery for supratentorial gliomas. Primary explanatory variables were peritumoural and/or tumoural glutamate concentrations, glutamate transporter expression (EAAT2 and SXC). Univariate and multivariate survival analysis was performed with primary outcomes of time to first post-operative seizure and overall survival. Subgroup analysis was performed in patients with de novo glioblastomas who received adjuvant chemoradiotherapy. 47 (21.8 %), 34 (15.8 %) and 135 (62.5 %) WHO grade II, III and IV gliomas respectively were followed for a median of 15.8 months. Following multivariate analysis, there was a non-significant association between higher peritumoural glutamate concentrations and time to first post-operative seizure (HR 2.07, CI 0.98-4.37, p = 0.06). In subgroup analysis of 81 glioblastoma patients who received adjunct chemoradiotherapy, peritumoural glutamate concentration was significantly associated with time to first post-operative seizure (HR 3.10, CI 1.20-7.97, p = 0.02). In both the overall cohort and subgroup analysis no glutamate cycle biomarkers were predictive of overall survival. Increased concentrations of peritumoural glutamate were significantly associated with shorter periods of post-operative seizure freedom in patients with de novo glioblastomas treated with adjuvant chemoradiotherapy. No glutamate cycle biomarkers were predictive of overall survival. These results suggest that therapies targeting glutamate may be beneficial in tumour associated epilepsy.


Assuntos
Ácido Glutâmico/metabolismo , Procedimentos Neurocirúrgicos/efeitos adversos , Complicações Pós-Operatórias/metabolismo , Convulsões/tratamento farmacológico , Convulsões/etiologia , Adulto , Idoso , Anticonvulsivantes/uso terapêutico , Quimiorradioterapia Adjuvante/efeitos adversos , Estudos de Coortes , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Glioma/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Supratentoriais/cirurgia , Análise de Sobrevida
20.
J Neurooncol ; 125(2): 237-48, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26391593

RESUMO

Glioblastoma is the most aggressive and lethal tumour of the central nervous system and as such the identification of reliable prognostic and predictive biomarkers for patient survival and tumour recurrence is paramount. MicroRNA detection has rapidly emerged as potential biomarkers, in patients with glioblastoma. Over the last decade, analysis of miRNA in laboratory based studies have yielded several candidates as potential biomarkers however, the accepted use of these candidates in the clinic is yet to be validated. Here we will examine the use of miRNA signatures to improve glioblastoma stratification into subgroups and summarise recent advances made in miRNA examination as potential biomarkers for glioblastoma progression and recurrence.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa